File size: 1,801 Bytes
e61e934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# core/van_normalizer.py
import re
import nltk
from nltk import pos_tag, word_tokenize
from nltk.stem import WordNetLemmatizer

# make sure you have these (run once if missing):
# python -m nltk.downloader punkt averaged_perceptron_tagger wordnet omw-1.4

lemmatizer = WordNetLemmatizer()

def normalize_to_van(text: str) -> str:
    """
    VAN-based normalization (optimized for clinical trial domain):
    - Lowercases and removes punctuation
    - Tokenizes and POS-tags
    - Keeps only Nouns (N), Adjectives (J), and key Verbs (V)
    - Explicitly removes determiners/articles (a, an, the)
    - Lemmatizes each token to its base form
    - Returns a space-joined string suitable for FAISS embedding
    """
    if not text:
        return ""

    # Basic cleanup
    text = text.lower().strip()
    text = re.sub(r"[^a-z0-9\s-]", " ", text)  # remove punctuation
    tokens = word_tokenize(text)

    # POS tagging
    tagged = pos_tag(tokens)

    filtered = []
    for word, tag in tagged:
        # Skip common determiners, articles, and auxiliary verbs
        if word in {"a", "an", "the", "is", "are", "was", "were", "be", "been", "being"}:
            continue

        # Keep only verbs, adjectives, and nouns
        if tag.startswith("V") or tag.startswith("J") or tag.startswith("N"):
            filtered.append((word, tag))

    # Lemmatize each word to its appropriate part of speech
    lemmas = []
    for word, tag in filtered:
        pos = (
            "v" if tag.startswith("V")
            else "a" if tag.startswith("J")
            else "n"
        )
        lemmas.append(lemmatizer.lemmatize(word, pos))

    # Join and clean
    normalized = " ".join(lemmas).strip()
    normalized = re.sub(r"\s+", " ", normalized)  # collapse multiple spaces
    return normalized