File size: 15,327 Bytes
f9053c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# ==========================================================
# SAFE-MODE PRELAUNCH CLEANUP (runs before any heavy imports)
# ==========================================================
import os, shutil, time, glob

def _prelaunch_cleanup(threshold_gb=45.0):
    """Early cleanup to prevent Hugging Face Space eviction (50 GB limit)."""
    def _used_gb(path="/home/user/app"):
        try:
            total, used, free = shutil.disk_usage(path)
            used_gb = max(0.0, min(used / (1024**3), 49.9))
            return used_gb
        except Exception:
            return 0.0

    used = _used_gb()
    print(f"\nπŸ’Ύ Startup disk usage: {used:.2f} GB")

    cache_paths = [
        os.path.expanduser("~/.cache/huggingface"),
        os.path.expanduser("~/.cache/hfhub"),
        "/home/user/.cache/huggingface",
        "/home/user/.cache",
        "/home/user/app/__pycache__",
        "/home/user/app/data/__pycache__",
    ]
    for p in cache_paths:
        if os.path.exists(p):
            shutil.rmtree(p, ignore_errors=True)

    if used > threshold_gb:
        print(f"⚠️ Usage {used:.2f} GB > {threshold_gb} GB β€” performing aggressive cleanup.")
        preserve = {"faiss.index", "faiss.index.meta.json", "glossary.json"}
        folders = ["/home/user/app/data/docs_cache", "/home/user/app/tmp_docs", "/home/user/app/persistent"]
        for folder in folders:
            if os.path.exists(folder):
                for f in glob.glob(os.path.join(folder, "*")):
                    if os.path.basename(f) in preserve:
                        continue
                    try:
                        if os.path.isfile(f):
                            os.remove(f)
                        else:
                            shutil.rmtree(f, ignore_errors=True)
                    except Exception:
                        pass
        print("🧹 Aggressive cleanup complete.")

    print(f"✨ Disk after cleanup: {_used_gb():.2f} GB\n")
    shutil.rmtree("/home/user/app/runtime_faiss", ignore_errors=True)

_prelaunch_cleanup()

# ==========================================================
# MAIN APP β€” Clinical Trial Chatbot
# ==========================================================
import gradio as gr
import pandas as pd
import json, faiss, numpy as np, shutil
from sentence_transformers import SentenceTransformer
from core.hybrid_retriever import summarize_combined
from core import vector_store, vector_sync

APP_TITLE = "🧠 Clinical Research Chatbot"
APP_DESC = (
    "Ask any clinical research or GCP-related question. "
    "Retrieves and summarizes from ICH, GCDMP, EMA, FDA, Excel, and Web datasets."
)

DATA_PATHS = [
    "/home/user/app/persistent/faiss.index",
    "/home/user/app/persistent/faiss.index.meta.json",
    "/home/user/app/data/docs_cache",
]

# ----------------------------------------------------------
# CLEAR INDEX / CACHE
# ----------------------------------------------------------
def clear_index():
    removed = []
    for p in DATA_PATHS:
        if os.path.isdir(p):
            shutil.rmtree(p, ignore_errors=True)
            removed.append(f"πŸ—‘οΈ Deleted folder: {p}")
        elif os.path.exists(p):
            os.remove(p)
            removed.append(f"πŸ—‘οΈ Deleted file: {p}")
    msg = "\n".join(removed) if removed else "ℹ️ No cache files found."
    print(msg)
    return msg

# ----------------------------------------------------------
# EMBEDDER HELPER
# ----------------------------------------------------------
def _load_embedder():
    print("πŸ“¦ Loading embedding model: sentence-transformers/all-MiniLM-L6-v2 ...")
    model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
    print("βœ… Model loaded.")
    return model

# ----------------------------------------------------------
# WEB CRAWLER with LOCAL CACHE (Optimized & Safe)
# ----------------------------------------------------------
def web_crawler_loader(
    urls_file="/home/user/app/data/urls.txt",
    cache_path="/home/user/app/persistent/web_cache.json",
    max_pages=3,
    timeout=20,
    force_refresh=False,
):
    """
    Loads readable text content from URLs listed in urls.txt.
    Uses a local cache (web_cache.json) to skip re-downloading.
    Returns list of dicts: [{ 'source': URL, 'type': 'Website', 'text': text }]
    """
    import requests, re, time, json
    from bs4 import BeautifulSoup

    # --- Load existing cache (if any) ---
    cache = {}
    if os.path.exists(cache_path) and not force_refresh:
        try:
            with open(cache_path, "r", encoding="utf-8") as f:
                cache = json.load(f)
            print(f"πŸ—‚οΈ Loaded cached web content ({len(cache)} entries).")
        except Exception as e:
            print(f"⚠️ Cache read error ({e}) β€” starting fresh.")
            cache = {}

    # --- Validate URL list ---
    if not os.path.exists(urls_file):
        print(f"⚠️ URLs file not found: {urls_file}")
        return list(cache.values())

    with open(urls_file, "r", encoding="utf-8") as f:
        urls = [u.strip() for u in f if u.strip() and not u.startswith("#")]

    print(f"🌐 Found {len(urls)} URLs in {urls_file}")
    new_entries = {}

    for i, url in enumerate(urls[: max_pages * 10]):
        if url in cache and not force_refresh:
            print(f"♻️ Using cached content for {url}")
            new_entries[url] = cache[url]
            continue

        try:
            print(f"🌐 Fetching ({i+1}/{len(urls)}): {url}")
            resp = requests.get(
                url,
                timeout=timeout,
                headers={"User-Agent": "ClinicalTrialChatBot/1.0 (+https://huggingface.co/essprasad)"}
            )

            if resp.status_code != 200:
                print(f"⚠️ Skipped {url}: HTTP {resp.status_code}")
                continue

            soup = BeautifulSoup(resp.text, "html.parser")

            # Remove unwanted elements
            for tag in soup(["script", "style", "nav", "header", "footer", "noscript", "iframe"]):
                tag.decompose()

            # Extract visible text
            text = " ".join(t.strip() for t in soup.get_text().split())
            text = re.sub(r"\s+", " ", text).strip()

            if len(text) < 500:
                print(f"⚠️ Skipped {url}: too little readable text ({len(text)} chars).")
                continue

            # Keep first 3000 chars to reduce vector size
            entry_text = f"Source URL: {url}. {text[:3000]}"
            new_entries[url] = {"source": url, "type": "Website", "text": entry_text}
            print(f"βœ… Cached: {url}")

            time.sleep(1)  # polite delay

        except Exception as e:
            print(f"⚠️ Failed to fetch {url}: {e}")

    # --- Merge & Save updated cache ---
    if new_entries:
        cache.update(new_entries)
        try:
            os.makedirs(os.path.dirname(cache_path), exist_ok=True)
            with open(cache_path, "w", encoding="utf-8") as f:
                json.dump(cache, f, indent=2)
            print(f"πŸ’Ύ Web cache updated ({len(cache)} total URLs).")
        except Exception as e:
            print(f"⚠️ Failed to write cache: {e}")

    return list(cache.values())


def rebuild_index():
    """Fully rebuild FAISS index using glossary + Excel + web sources (fresh start)."""
    print("🧠 Rebuilding FAISS index (Glossary + Excel + Web)...")

    import os, json, re, shutil, pandas as pd, faiss, numpy as np
    from huggingface_hub import hf_hub_download, list_repo_files
    from core.vector_sync import rebuild_faiss_from_glossary, _upload_to_dataset
    from sentence_transformers import SentenceTransformer

    repo_id_index = "essprasad/CT-Chat-Index"
    repo_id_docs = "essprasad/CT-Chat-Docs"
    local_dir = "/home/user/app/persistent"
    os.makedirs(local_dir, exist_ok=True)

    # --- STEP 0: CLEAN OLD INDEX ---
    for old_file in ["faiss.index", "faiss.index.meta.json"]:
        old_path = os.path.join(local_dir, old_file)
        if os.path.exists(old_path):
            os.remove(old_path)
            print(f"πŸ—‘οΈ Removed old FAISS artifact: {old_path}")

    # --- STEP 1: LOAD GLOSSARY BASE ---
    glossary_path = os.path.join(local_dir, "glossary.json")
    if not os.path.exists(glossary_path):
        print(f"πŸ“₯ Downloading glossary.json from {repo_id_index}...")
        downloaded_path = hf_hub_download(
            repo_id=repo_id_index,
            filename="persistent/glossary.json",
            repo_type="dataset",
            force_download=True,
        )
        shutil.copy2(downloaded_path, glossary_path)
        print(f"βœ… glossary.json copied to {glossary_path}")

    index, metas = rebuild_faiss_from_glossary(glossary_path=glossary_path)
    print(f"πŸ“˜ Loaded {len(metas)} glossary entries.")

    # --- STEP 2: INDEX EXCEL FILES ---
    print("πŸ“‘ Scanning Excel files...")
    repo_files = list_repo_files(repo_id_docs, repo_type="dataset")
    excel_files = [f for f in repo_files if f.lower().endswith((".xlsx", ".xls"))]

    model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
    excel_entries = []

    for file_name in excel_files:
        print(f"πŸ“„ Processing Excel: {file_name}")
        path = hf_hub_download(repo_id_docs, filename=file_name, repo_type="dataset")
        xls = pd.read_excel(path, sheet_name=None)

        for sheet_name, df in xls.items():
            df = df.fillna("").dropna(how="all")
            df.columns = [str(c).strip().lower() for c in df.columns]

            term_col = next((c for c in df.columns if "term" in c or "word" in c), None)
            if not term_col:
                print(f"⚠️ No 'term' column in {file_name}:{sheet_name}")
                continue

            for _, row in df.iterrows():
                term = str(row.get(term_col, "")).strip()
                if not term:
                    continue

                # Combine all columns with values
                parts = [
                    f"{c.capitalize()}: {str(row[c]).strip()}"
                    for c in df.columns if str(row[c]).strip()
                ]
                joined = " ".join(parts)
                if len(joined) < 80:  # Skip tiny entries
                    continue

                entry_text = f"Definition of {term}: {joined}"
                excel_entries.append({
                    "source": file_name,
                    "sheet": sheet_name,
                    "term": term,
                    "type": "Excel",
                    "file": file_name,
                    "text": entry_text,
                })

    if excel_entries:
        print(f"βœ… Loaded {len(excel_entries)} Excel rows.")
        texts = [e["text"] for e in excel_entries]
        embeddings = model.encode(texts, show_progress_bar=True, convert_to_numpy=True).astype("float32")
        faiss.normalize_L2(embeddings)
        index.add(embeddings)
        metas.extend(excel_entries)
        print("βœ… Excel content added to FAISS.")

    # --- STEP 3: WEB CONTENT ---
    try:
        print("🌐 Loading and embedding web content...")
        web_entries = web_crawler_loader(
            urls_file="/home/user/app/data/urls.txt",
            cache_path="/home/user/app/persistent/web_cache.json",
            max_pages=3,
            timeout=20,
            force_refresh=False,
        )
        if web_entries:
            web_entries = [e for e in web_entries if len(e.get("text", "")) > 200]
            print(f"βœ… Retrieved {len(web_entries)} web entries.")
            web_texts = [e["text"] for e in web_entries]
            web_emb = model.encode(web_texts, show_progress_bar=True, convert_to_numpy=True).astype("float32")
            faiss.normalize_L2(web_emb)
            index.add(web_emb)
            metas.extend(web_entries)
            print("βœ… Web content added to FAISS.")
        else:
            print("⚠️ No web entries found.")
    except Exception as e:
        print(f"⚠️ Web content embedding failed: {e}")

    # --- STEP 4: SAVE & UPLOAD ---
    faiss_path = os.path.join(local_dir, "faiss.index")
    meta_path = os.path.join(local_dir, "faiss.index.meta.json")
    faiss.write_index(index, faiss_path)
    with open(meta_path, "w", encoding="utf-8") as f:
        json.dump(metas, f, indent=2)
    print(f"πŸ’Ύ Local FAISS index saved ({len(metas)} entries).")

    try:
        _upload_to_dataset(faiss_path, meta_path, repo_id_index)
        print(f"☁️ Uploaded latest FAISS index ({len(metas)} entries) to {repo_id_index}.")
    except Exception as e:
        print(f"⚠️ Upload to Hugging Face failed: {e}")

    print("βœ… Glossary + Excel + Web FAISS rebuilt successfully.")
    return f"βœ… Rebuild complete: {len(metas)} entries (including Excel + Web)."

# ----------------------------------------------------------
# 4. REBUILD GLOSSARY
# ----------------------------------------------------------
def rebuild_glossary():
    try:
        from core.glossary_builder import rebuild_and_upload
        rebuild_and_upload()
        return "βœ… Glossary rebuilt and uploaded successfully."
    except Exception as e:
        return f"⚠️ Glossary rebuild failed: {e}"

# ----------------------------------------------------------
# 5. CHATBOT LOGIC
# ----------------------------------------------------------
def chat_answer(query, mode):
    try:
        query_clean = query.strip()
        if not query_clean:
            return "<i>⚠️ Please enter a valid query.</i>"

        from core.hybrid_retriever import summarize_combined
        return summarize_combined(query_clean, mode=mode)
    except Exception as e:
        print("❌ Chatbot error:", e)
        return f"<i>⚠️ Error: {e}</i>"

# ----------------------------------------------------------
# 6. GRADIO UI (Simplified + Keyboard Support)
# ----------------------------------------------------------
with gr.Blocks(theme="gradio/soft") as demo:
    gr.Markdown(f"# {APP_TITLE}")
    gr.Markdown(APP_DESC)

    # πŸ”Ή Main input + output areas
    query_box = gr.Textbox(
        label="Ask your clinical trial question",
        placeholder="e.g. What is an eCRF?",
        lines=2,
        show_label=True
    )
    output_box = gr.HTML(label="Answer")

    # πŸ”Ή Control buttons row
    with gr.Row():
        submit_btn = gr.Button("πŸš€ Submit", variant="primary")
        rebuild_btn = gr.Button("πŸ” Rebuild Index")
        rebuild_glossary_btn = gr.Button("πŸ“˜ Rebuild Glossary")
        clear_btn = gr.Button("🧹 Clear Cache / Index")

    # πŸ”Ή Event bindings
    submit_btn.click(fn=chat_answer, inputs=[query_box], outputs=output_box)
    query_box.submit(fn=chat_answer, inputs=[query_box], outputs=output_box)  # ↡ Press Enter = Submit

    rebuild_btn.click(fn=rebuild_index, outputs=output_box)
    rebuild_glossary_btn.click(fn=rebuild_glossary, outputs=output_box)
    clear_btn.click(fn=clear_index, outputs=output_box)

# ----------------------------------------------------------
# 7. LAUNCH APP
# ----------------------------------------------------------
if __name__ == "__main__":
    print("πŸš€ Starting Clinical Trial Chatbot...")
    print("🧠 Initializing retriever warm-up...")
    demo.launch(server_name="0.0.0.0", server_port=7860, share=False)