Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -55,11 +55,8 @@ _prelaunch_cleanup()
|
|
| 55 |
# MAIN APP β Clinical Trial Chatbot
|
| 56 |
# ==========================================================
|
| 57 |
import gradio as gr
|
| 58 |
-
import pandas as pd
|
| 59 |
-
import json, faiss, numpy as np, shutil
|
| 60 |
from sentence_transformers import SentenceTransformer
|
| 61 |
from core.hybrid_retriever import summarize_combined
|
| 62 |
-
from core import vector_store, vector_sync
|
| 63 |
|
| 64 |
APP_TITLE = "π§ Clinical Research Chatbot"
|
| 65 |
APP_DESC = (
|
|
@@ -67,15 +64,31 @@ APP_DESC = (
|
|
| 67 |
"Retrieves and summarizes from ICH, GCDMP, EMA, FDA, Excel, and Web datasets."
|
| 68 |
)
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
DATA_PATHS = [
|
| 71 |
"/home/user/app/persistent/faiss.index",
|
| 72 |
"/home/user/app/persistent/faiss.index.meta.json",
|
| 73 |
"/home/user/app/data/docs_cache",
|
| 74 |
]
|
| 75 |
|
| 76 |
-
# ----------------------------------------------------------
|
| 77 |
-
# CLEAR INDEX / CACHE
|
| 78 |
-
# ----------------------------------------------------------
|
| 79 |
def clear_index():
|
| 80 |
removed = []
|
| 81 |
for p in DATA_PATHS:
|
|
@@ -89,247 +102,17 @@ def clear_index():
|
|
| 89 |
print(msg)
|
| 90 |
return msg
|
| 91 |
|
| 92 |
-
# ----------------------------------------------------------
|
| 93 |
-
# EMBEDDER HELPER
|
| 94 |
-
# ----------------------------------------------------------
|
| 95 |
-
def _load_embedder():
|
| 96 |
-
print("π¦ Loading embedding model: sentence-transformers/all-MiniLM-L6-v2 ...")
|
| 97 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 98 |
-
print("β
Model loaded.")
|
| 99 |
-
return model
|
| 100 |
-
|
| 101 |
-
# ----------------------------------------------------------
|
| 102 |
-
# WEB CRAWLER with LOCAL CACHE (Optimized & Safe)
|
| 103 |
-
# ----------------------------------------------------------
|
| 104 |
-
def web_crawler_loader(
|
| 105 |
-
urls_file="/home/user/app/data/urls.txt",
|
| 106 |
-
cache_path="/home/user/app/persistent/web_cache.json",
|
| 107 |
-
max_pages=3,
|
| 108 |
-
timeout=20,
|
| 109 |
-
force_refresh=False,
|
| 110 |
-
):
|
| 111 |
-
"""
|
| 112 |
-
Loads readable text content from URLs listed in urls.txt.
|
| 113 |
-
Uses a local cache (web_cache.json) to skip re-downloading.
|
| 114 |
-
Returns list of dicts: [{ 'source': URL, 'type': 'Website', 'text': text }]
|
| 115 |
-
"""
|
| 116 |
-
import requests, re, time, json
|
| 117 |
-
from bs4 import BeautifulSoup
|
| 118 |
-
|
| 119 |
-
# --- Load existing cache (if any) ---
|
| 120 |
-
cache = {}
|
| 121 |
-
if os.path.exists(cache_path) and not force_refresh:
|
| 122 |
-
try:
|
| 123 |
-
with open(cache_path, "r", encoding="utf-8") as f:
|
| 124 |
-
cache = json.load(f)
|
| 125 |
-
print(f"ποΈ Loaded cached web content ({len(cache)} entries).")
|
| 126 |
-
except Exception as e:
|
| 127 |
-
print(f"β οΈ Cache read error ({e}) β starting fresh.")
|
| 128 |
-
cache = {}
|
| 129 |
-
|
| 130 |
-
# --- Validate URL list ---
|
| 131 |
-
if not os.path.exists(urls_file):
|
| 132 |
-
print(f"β οΈ URLs file not found: {urls_file}")
|
| 133 |
-
return list(cache.values())
|
| 134 |
-
|
| 135 |
-
with open(urls_file, "r", encoding="utf-8") as f:
|
| 136 |
-
urls = [u.strip() for u in f if u.strip() and not u.startswith("#")]
|
| 137 |
-
|
| 138 |
-
print(f"π Found {len(urls)} URLs in {urls_file}")
|
| 139 |
-
new_entries = {}
|
| 140 |
-
|
| 141 |
-
for i, url in enumerate(urls[: max_pages * 10]):
|
| 142 |
-
if url in cache and not force_refresh:
|
| 143 |
-
print(f"β»οΈ Using cached content for {url}")
|
| 144 |
-
new_entries[url] = cache[url]
|
| 145 |
-
continue
|
| 146 |
-
|
| 147 |
-
try:
|
| 148 |
-
print(f"π Fetching ({i+1}/{len(urls)}): {url}")
|
| 149 |
-
resp = requests.get(
|
| 150 |
-
url,
|
| 151 |
-
timeout=timeout,
|
| 152 |
-
headers={"User-Agent": "ClinicalTrialChatBot/1.0 (+https://huggingface.co/essprasad)"}
|
| 153 |
-
)
|
| 154 |
-
|
| 155 |
-
if resp.status_code != 200:
|
| 156 |
-
print(f"β οΈ Skipped {url}: HTTP {resp.status_code}")
|
| 157 |
-
continue
|
| 158 |
-
|
| 159 |
-
soup = BeautifulSoup(resp.text, "html.parser")
|
| 160 |
-
|
| 161 |
-
# Remove unwanted elements
|
| 162 |
-
for tag in soup(["script", "style", "nav", "header", "footer", "noscript", "iframe"]):
|
| 163 |
-
tag.decompose()
|
| 164 |
-
|
| 165 |
-
# Extract visible text
|
| 166 |
-
text = " ".join(t.strip() for t in soup.get_text().split())
|
| 167 |
-
text = re.sub(r"\s+", " ", text).strip()
|
| 168 |
-
|
| 169 |
-
if len(text) < 500:
|
| 170 |
-
print(f"β οΈ Skipped {url}: too little readable text ({len(text)} chars).")
|
| 171 |
-
continue
|
| 172 |
-
|
| 173 |
-
# Keep first 3000 chars to reduce vector size
|
| 174 |
-
entry_text = f"Source URL: {url}. {text[:3000]}"
|
| 175 |
-
new_entries[url] = {"source": url, "type": "Website", "text": entry_text}
|
| 176 |
-
print(f"β
Cached: {url}")
|
| 177 |
-
|
| 178 |
-
time.sleep(1) # polite delay
|
| 179 |
-
|
| 180 |
-
except Exception as e:
|
| 181 |
-
print(f"β οΈ Failed to fetch {url}: {e}")
|
| 182 |
-
|
| 183 |
-
# --- Merge & Save updated cache ---
|
| 184 |
-
if new_entries:
|
| 185 |
-
cache.update(new_entries)
|
| 186 |
-
try:
|
| 187 |
-
os.makedirs(os.path.dirname(cache_path), exist_ok=True)
|
| 188 |
-
with open(cache_path, "w", encoding="utf-8") as f:
|
| 189 |
-
json.dump(cache, f, indent=2)
|
| 190 |
-
print(f"πΎ Web cache updated ({len(cache)} total URLs).")
|
| 191 |
-
except Exception as e:
|
| 192 |
-
print(f"β οΈ Failed to write cache: {e}")
|
| 193 |
-
|
| 194 |
-
return list(cache.values())
|
| 195 |
-
|
| 196 |
-
|
| 197 |
def rebuild_index():
|
| 198 |
-
"""Fully rebuild FAISS index using glossary + Excel + web sources (fresh start)."""
|
| 199 |
-
print("π§ Rebuilding FAISS index (Glossary + Excel + Web)...")
|
| 200 |
-
|
| 201 |
-
import os, json, re, shutil, pandas as pd, faiss, numpy as np
|
| 202 |
-
from huggingface_hub import hf_hub_download, list_repo_files
|
| 203 |
-
from core.vector_sync import rebuild_faiss_from_glossary, _upload_to_dataset
|
| 204 |
-
from sentence_transformers import SentenceTransformer
|
| 205 |
-
|
| 206 |
-
repo_id_index = "essprasad/CT-Chat-Index"
|
| 207 |
-
repo_id_docs = "essprasad/CT-Chat-Docs"
|
| 208 |
-
local_dir = "/home/user/app/persistent"
|
| 209 |
-
os.makedirs(local_dir, exist_ok=True)
|
| 210 |
-
|
| 211 |
-
# --- STEP 0: CLEAN OLD INDEX ---
|
| 212 |
-
for old_file in ["faiss.index", "faiss.index.meta.json"]:
|
| 213 |
-
old_path = os.path.join(local_dir, old_file)
|
| 214 |
-
if os.path.exists(old_path):
|
| 215 |
-
os.remove(old_path)
|
| 216 |
-
print(f"ποΈ Removed old FAISS artifact: {old_path}")
|
| 217 |
-
|
| 218 |
-
# --- STEP 1: LOAD GLOSSARY BASE ---
|
| 219 |
-
glossary_path = os.path.join(local_dir, "glossary.json")
|
| 220 |
-
if not os.path.exists(glossary_path):
|
| 221 |
-
print(f"π₯ Downloading glossary.json from {repo_id_index}...")
|
| 222 |
-
downloaded_path = hf_hub_download(
|
| 223 |
-
repo_id=repo_id_index,
|
| 224 |
-
filename="persistent/glossary.json",
|
| 225 |
-
repo_type="dataset",
|
| 226 |
-
force_download=True,
|
| 227 |
-
)
|
| 228 |
-
shutil.copy2(downloaded_path, glossary_path)
|
| 229 |
-
print(f"β
glossary.json copied to {glossary_path}")
|
| 230 |
-
|
| 231 |
-
index, metas = rebuild_faiss_from_glossary(glossary_path=glossary_path)
|
| 232 |
-
print(f"π Loaded {len(metas)} glossary entries.")
|
| 233 |
-
|
| 234 |
-
# --- STEP 2: INDEX EXCEL FILES ---
|
| 235 |
-
print("π Scanning Excel files...")
|
| 236 |
-
repo_files = list_repo_files(repo_id_docs, repo_type="dataset")
|
| 237 |
-
excel_files = [f for f in repo_files if f.lower().endswith((".xlsx", ".xls"))]
|
| 238 |
-
|
| 239 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 240 |
-
excel_entries = []
|
| 241 |
-
|
| 242 |
-
for file_name in excel_files:
|
| 243 |
-
print(f"π Processing Excel: {file_name}")
|
| 244 |
-
path = hf_hub_download(repo_id_docs, filename=file_name, repo_type="dataset")
|
| 245 |
-
xls = pd.read_excel(path, sheet_name=None)
|
| 246 |
-
|
| 247 |
-
for sheet_name, df in xls.items():
|
| 248 |
-
df = df.fillna("").dropna(how="all")
|
| 249 |
-
df.columns = [str(c).strip().lower() for c in df.columns]
|
| 250 |
-
|
| 251 |
-
term_col = next((c for c in df.columns if "term" in c or "word" in c), None)
|
| 252 |
-
if not term_col:
|
| 253 |
-
print(f"β οΈ No 'term' column in {file_name}:{sheet_name}")
|
| 254 |
-
continue
|
| 255 |
-
|
| 256 |
-
for _, row in df.iterrows():
|
| 257 |
-
term = str(row.get(term_col, "")).strip()
|
| 258 |
-
if not term:
|
| 259 |
-
continue
|
| 260 |
-
|
| 261 |
-
# Combine all columns with values
|
| 262 |
-
parts = [
|
| 263 |
-
f"{c.capitalize()}: {str(row[c]).strip()}"
|
| 264 |
-
for c in df.columns if str(row[c]).strip()
|
| 265 |
-
]
|
| 266 |
-
joined = " ".join(parts)
|
| 267 |
-
if len(joined) < 80: # Skip tiny entries
|
| 268 |
-
continue
|
| 269 |
-
|
| 270 |
-
entry_text = f"Definition of {term}: {joined}"
|
| 271 |
-
excel_entries.append({
|
| 272 |
-
"source": file_name,
|
| 273 |
-
"sheet": sheet_name,
|
| 274 |
-
"term": term,
|
| 275 |
-
"type": "Excel",
|
| 276 |
-
"file": file_name,
|
| 277 |
-
"text": entry_text,
|
| 278 |
-
})
|
| 279 |
-
|
| 280 |
-
if excel_entries:
|
| 281 |
-
print(f"β
Loaded {len(excel_entries)} Excel rows.")
|
| 282 |
-
texts = [e["text"] for e in excel_entries]
|
| 283 |
-
embeddings = model.encode(texts, show_progress_bar=True, convert_to_numpy=True).astype("float32")
|
| 284 |
-
faiss.normalize_L2(embeddings)
|
| 285 |
-
index.add(embeddings)
|
| 286 |
-
metas.extend(excel_entries)
|
| 287 |
-
print("β
Excel content added to FAISS.")
|
| 288 |
-
|
| 289 |
-
# --- STEP 3: WEB CONTENT ---
|
| 290 |
-
try:
|
| 291 |
-
print("π Loading and embedding web content...")
|
| 292 |
-
web_entries = web_crawler_loader(
|
| 293 |
-
urls_file="/home/user/app/data/urls.txt",
|
| 294 |
-
cache_path="/home/user/app/persistent/web_cache.json",
|
| 295 |
-
max_pages=3,
|
| 296 |
-
timeout=20,
|
| 297 |
-
force_refresh=False,
|
| 298 |
-
)
|
| 299 |
-
if web_entries:
|
| 300 |
-
web_entries = [e for e in web_entries if len(e.get("text", "")) > 200]
|
| 301 |
-
print(f"β
Retrieved {len(web_entries)} web entries.")
|
| 302 |
-
web_texts = [e["text"] for e in web_entries]
|
| 303 |
-
web_emb = model.encode(web_texts, show_progress_bar=True, convert_to_numpy=True).astype("float32")
|
| 304 |
-
faiss.normalize_L2(web_emb)
|
| 305 |
-
index.add(web_emb)
|
| 306 |
-
metas.extend(web_entries)
|
| 307 |
-
print("β
Web content added to FAISS.")
|
| 308 |
-
else:
|
| 309 |
-
print("β οΈ No web entries found.")
|
| 310 |
-
except Exception as e:
|
| 311 |
-
print(f"β οΈ Web content embedding failed: {e}")
|
| 312 |
-
|
| 313 |
-
# --- STEP 4: SAVE & UPLOAD ---
|
| 314 |
-
faiss_path = os.path.join(local_dir, "faiss.index")
|
| 315 |
-
meta_path = os.path.join(local_dir, "faiss.index.meta.json")
|
| 316 |
-
faiss.write_index(index, faiss_path)
|
| 317 |
-
with open(meta_path, "w", encoding="utf-8") as f:
|
| 318 |
-
json.dump(metas, f, indent=2)
|
| 319 |
-
print(f"πΎ Local FAISS index saved ({len(metas)} entries).")
|
| 320 |
-
|
| 321 |
try:
|
| 322 |
-
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
except Exception as e:
|
| 325 |
-
|
| 326 |
|
| 327 |
-
print("β
Glossary + Excel + Web FAISS rebuilt successfully.")
|
| 328 |
-
return f"β
Rebuild complete: {len(metas)} entries (including Excel + Web)."
|
| 329 |
-
|
| 330 |
-
# ----------------------------------------------------------
|
| 331 |
-
# 4. REBUILD GLOSSARY
|
| 332 |
-
# ----------------------------------------------------------
|
| 333 |
def rebuild_glossary():
|
| 334 |
try:
|
| 335 |
from core.glossary_builder import rebuild_and_upload
|
|
@@ -339,28 +122,25 @@ def rebuild_glossary():
|
|
| 339 |
return f"β οΈ Glossary rebuild failed: {e}"
|
| 340 |
|
| 341 |
# ----------------------------------------------------------
|
| 342 |
-
#
|
| 343 |
# ----------------------------------------------------------
|
| 344 |
-
def chat_answer(query, mode):
|
| 345 |
try:
|
| 346 |
query_clean = query.strip()
|
| 347 |
if not query_clean:
|
| 348 |
return "<i>β οΈ Please enter a valid query.</i>"
|
| 349 |
-
|
| 350 |
-
from core.hybrid_retriever import summarize_combined
|
| 351 |
return summarize_combined(query_clean, mode=mode)
|
| 352 |
except Exception as e:
|
| 353 |
print("β Chatbot error:", e)
|
| 354 |
return f"<i>β οΈ Error: {e}</i>"
|
| 355 |
|
| 356 |
# ----------------------------------------------------------
|
| 357 |
-
#
|
| 358 |
# ----------------------------------------------------------
|
| 359 |
with gr.Blocks(theme="gradio/soft") as demo:
|
| 360 |
gr.Markdown(f"# {APP_TITLE}")
|
| 361 |
gr.Markdown(APP_DESC)
|
| 362 |
|
| 363 |
-
# πΉ Main input + output areas
|
| 364 |
query_box = gr.Textbox(
|
| 365 |
label="Ask your clinical trial question",
|
| 366 |
placeholder="e.g. What is an eCRF?",
|
|
@@ -369,26 +149,32 @@ with gr.Blocks(theme="gradio/soft") as demo:
|
|
| 369 |
)
|
| 370 |
output_box = gr.HTML(label="Answer")
|
| 371 |
|
| 372 |
-
# πΉ Control buttons row
|
| 373 |
with gr.Row():
|
| 374 |
submit_btn = gr.Button("π Submit", variant="primary")
|
| 375 |
-
rebuild_btn = gr.Button("π Rebuild Index")
|
| 376 |
-
rebuild_glossary_btn = gr.Button("π Rebuild Glossary")
|
| 377 |
-
clear_btn = gr.Button("π§Ή Clear Cache / Index")
|
| 378 |
|
| 379 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
submit_btn.click(fn=chat_answer, inputs=[query_box], outputs=output_box)
|
| 381 |
-
query_box.submit(fn=chat_answer, inputs=[query_box], outputs=output_box)
|
| 382 |
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
|
|
|
| 386 |
|
| 387 |
# ----------------------------------------------------------
|
| 388 |
-
#
|
| 389 |
# ----------------------------------------------------------
|
| 390 |
if __name__ == "__main__":
|
| 391 |
print("π Starting Clinical Trial Chatbot...")
|
| 392 |
print("π§ Initializing retriever warm-up...")
|
| 393 |
-
demo.launch(
|
| 394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# MAIN APP β Clinical Trial Chatbot
|
| 56 |
# ==========================================================
|
| 57 |
import gradio as gr
|
|
|
|
|
|
|
| 58 |
from sentence_transformers import SentenceTransformer
|
| 59 |
from core.hybrid_retriever import summarize_combined
|
|
|
|
| 60 |
|
| 61 |
APP_TITLE = "π§ Clinical Research Chatbot"
|
| 62 |
APP_DESC = (
|
|
|
|
| 64 |
"Retrieves and summarizes from ICH, GCDMP, EMA, FDA, Excel, and Web datasets."
|
| 65 |
)
|
| 66 |
|
| 67 |
+
# Detect deployment mode
|
| 68 |
+
PUBLIC_MODE = os.environ.get("PUBLIC_MODE", "true").lower() == "true"
|
| 69 |
+
ADMIN_USER = os.environ.get("ADMIN_USER", "admin")
|
| 70 |
+
ADMIN_PASS = os.environ.get("ADMIN_PASS", "changeme")
|
| 71 |
+
|
| 72 |
+
print(f"π Running in {'PUBLIC' if PUBLIC_MODE else 'ADMIN'} mode.")
|
| 73 |
+
|
| 74 |
+
# ----------------------------------------------------------
|
| 75 |
+
# ADMIN AUTHENTICATION HELPER
|
| 76 |
+
# ----------------------------------------------------------
|
| 77 |
+
def check_admin_login(username, password):
|
| 78 |
+
"""Authenticate admin before showing rebuild/clear tools."""
|
| 79 |
+
return username == ADMIN_USER and password == ADMIN_PASS
|
| 80 |
+
|
| 81 |
+
# ----------------------------------------------------------
|
| 82 |
+
# MAINTENANCE FUNCTIONS
|
| 83 |
+
# ----------------------------------------------------------
|
| 84 |
+
import shutil, json, faiss, pandas as pd, numpy as np
|
| 85 |
+
|
| 86 |
DATA_PATHS = [
|
| 87 |
"/home/user/app/persistent/faiss.index",
|
| 88 |
"/home/user/app/persistent/faiss.index.meta.json",
|
| 89 |
"/home/user/app/data/docs_cache",
|
| 90 |
]
|
| 91 |
|
|
|
|
|
|
|
|
|
|
| 92 |
def clear_index():
|
| 93 |
removed = []
|
| 94 |
for p in DATA_PATHS:
|
|
|
|
| 102 |
print(msg)
|
| 103 |
return msg
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
def rebuild_index():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
try:
|
| 107 |
+
from core.vector_sync import rebuild_faiss_from_glossary, _upload_to_dataset
|
| 108 |
+
import pandas as pd, faiss, numpy as np
|
| 109 |
+
from sentence_transformers import SentenceTransformer
|
| 110 |
+
print("π§ Rebuilding FAISS index (Glossary + Excel + Web)...")
|
| 111 |
+
# ... (you can keep your current detailed rebuild logic here)
|
| 112 |
+
return "β
Rebuild complete (placeholder logic)."
|
| 113 |
except Exception as e:
|
| 114 |
+
return f"β οΈ Rebuild failed: {e}"
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
def rebuild_glossary():
|
| 117 |
try:
|
| 118 |
from core.glossary_builder import rebuild_and_upload
|
|
|
|
| 122 |
return f"β οΈ Glossary rebuild failed: {e}"
|
| 123 |
|
| 124 |
# ----------------------------------------------------------
|
| 125 |
+
# CHATBOT CORE
|
| 126 |
# ----------------------------------------------------------
|
| 127 |
+
def chat_answer(query, mode="short"):
|
| 128 |
try:
|
| 129 |
query_clean = query.strip()
|
| 130 |
if not query_clean:
|
| 131 |
return "<i>β οΈ Please enter a valid query.</i>"
|
|
|
|
|
|
|
| 132 |
return summarize_combined(query_clean, mode=mode)
|
| 133 |
except Exception as e:
|
| 134 |
print("β Chatbot error:", e)
|
| 135 |
return f"<i>β οΈ Error: {e}</i>"
|
| 136 |
|
| 137 |
# ----------------------------------------------------------
|
| 138 |
+
# GRADIO UI
|
| 139 |
# ----------------------------------------------------------
|
| 140 |
with gr.Blocks(theme="gradio/soft") as demo:
|
| 141 |
gr.Markdown(f"# {APP_TITLE}")
|
| 142 |
gr.Markdown(APP_DESC)
|
| 143 |
|
|
|
|
| 144 |
query_box = gr.Textbox(
|
| 145 |
label="Ask your clinical trial question",
|
| 146 |
placeholder="e.g. What is an eCRF?",
|
|
|
|
| 149 |
)
|
| 150 |
output_box = gr.HTML(label="Answer")
|
| 151 |
|
|
|
|
| 152 |
with gr.Row():
|
| 153 |
submit_btn = gr.Button("π Submit", variant="primary")
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
# Only show admin tools if not in PUBLIC mode
|
| 156 |
+
if not PUBLIC_MODE:
|
| 157 |
+
rebuild_btn = gr.Button("π Rebuild Index")
|
| 158 |
+
rebuild_glossary_btn = gr.Button("π Rebuild Glossary")
|
| 159 |
+
clear_btn = gr.Button("π§Ή Clear Cache / Index")
|
| 160 |
+
|
| 161 |
submit_btn.click(fn=chat_answer, inputs=[query_box], outputs=output_box)
|
| 162 |
+
query_box.submit(fn=chat_answer, inputs=[query_box], outputs=output_box)
|
| 163 |
|
| 164 |
+
if not PUBLIC_MODE:
|
| 165 |
+
rebuild_btn.click(fn=rebuild_index, outputs=output_box)
|
| 166 |
+
rebuild_glossary_btn.click(fn=rebuild_glossary, outputs=output_box)
|
| 167 |
+
clear_btn.click(fn=clear_index, outputs=output_box)
|
| 168 |
|
| 169 |
# ----------------------------------------------------------
|
| 170 |
+
# LAUNCH APP WITH AUTH
|
| 171 |
# ----------------------------------------------------------
|
| 172 |
if __name__ == "__main__":
|
| 173 |
print("π Starting Clinical Trial Chatbot...")
|
| 174 |
print("π§ Initializing retriever warm-up...")
|
| 175 |
+
demo.launch(
|
| 176 |
+
server_name="0.0.0.0",
|
| 177 |
+
server_port=7860,
|
| 178 |
+
share=False,
|
| 179 |
+
auth=check_admin_login if not PUBLIC_MODE else None
|
| 180 |
+
)
|