Spaces:
Running
Running
| import gradio as gr | |
| import spaces | |
| import os, torch, io | |
| import json | |
| os.system("python -m unidic download") | |
| import httpx | |
| # print("Make sure you've downloaded unidic (python -m unidic download) for this WebUI to work.") | |
| from melo.api import TTS | |
| import tempfile | |
| import wave | |
| from pydub import AudioSegment | |
| from transformers import ( | |
| AutoModelForCausalLM, | |
| AutoTokenizer, | |
| TextIteratorStreamer, | |
| BitsAndBytesConfig, | |
| ) | |
| quantization_config = BitsAndBytesConfig( | |
| load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "NousResearch/Hermes-2-Pro-Llama-3-8B", | |
| quantization_config=quantization_config, | |
| token=token, | |
| ) | |
| tok = AutoTokenizer.from_pretrained("NousResearch/Hermes-2-Pro-Llama-3-8B", token=token) | |
| terminators = [tok.eos_token_id, tok.convert_tokens_to_ids("<|eot_id|>")] | |
| def fetch_text(url): | |
| prefix_url = "https://r.jina.ai/" | |
| url = prefix_url + url | |
| response = httpx.get(url, timeout=60.0) | |
| return response.text | |
| def synthesize(article_url, progress=gr.Progress()): | |
| text = fetch_text(article_url) | |
| template = """ | |
| { | |
| "conversation": [ | |
| {"speaker": "", "text": ""}, | |
| {"speaker": "", "text": ""} | |
| ] | |
| } | |
| """ | |
| chat = [ | |
| { | |
| "role": "user", | |
| "content": f"{text} \n Convert the text as Elaborate Conversation between two people as Podcast.\nfollowing this template \n {template}", | |
| } | |
| ] | |
| messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) | |
| model_inputs = tok([messages], return_tensors="pt").to(device) | |
| text = model.generate( | |
| model_inputs, | |
| max_new_tokens=1024, | |
| do_sample=True, | |
| temperature=0.9, | |
| eos_token_id=terminators, | |
| ) | |
| speed = 1.0 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| models = { | |
| "EN": TTS(language="EN", device=device), | |
| } | |
| speakers = ["EN-Default", "EN-US"] | |
| combined_audio = AudioSegment.empty() | |
| conversation = json.loads(text) | |
| for i, turn in enumerate(conversation["conversation"]): | |
| bio = io.BytesIO() | |
| text = turn["text"] | |
| speaker = speakers[i % 2] | |
| speaker_id = models["EN"].hps.data.spk2id[speaker] | |
| models["EN"].tts_to_file( | |
| text, speaker_id, bio, speed=speed, pbar=progress.tqdm, format="wav" | |
| ) | |
| bio.seek(0) | |
| audio_segment = AudioSegment.from_file(bio, format="wav") | |
| combined_audio += audio_segment | |
| final_audio_path = "final.mp3" | |
| combined_audio.export(final_audio_path, format="mp3") | |
| return final_audio_path | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Not Ready to USE") | |
| gr.Markdown("# Turn Any Article into Podcast") | |
| gr.Markdown("## Easily convert articles from URLs into listenable audio Podcast.") | |
| with gr.Group(): | |
| text = gr.Textbox(label="Article Link") | |
| btn = gr.Button("Podcasitfy", variant="primary") | |
| aud = gr.Audio(interactive=False) | |
| btn.click(synthesize, inputs=[text], outputs=[aud]) | |
| demo.queue(api_open=True, default_concurrency_limit=10).launch(show_api=True) | |