#!/usr/bin/env bash set -euo pipefail echo "🚀 Builder (FlashAttn LayerNorm extra + Apex + Q8) — runtime com GPU visĂ­vel" # ===== Config e diretĂłrios ===== export SELF_HF_REPO_ID="${SELF_HF_REPO_ID:-euIaxs22/Aduc-sdr}" # Repo no HF para wheels export HF_HOME="${HF_HOME:-/app/model_cache}" export HF_HUB_CACHE="${HF_HUB_CACHE:-$HF_HOME/hub}" export TORCH_HOME="${TORCH_HOME:-$HF_HOME/torch}" export HF_HUB_ENABLE_HF_TRANSFER="${HF_HUB_ENABLE_HF_TRANSFER:-1}" export PATH="$HOME/.local/bin:$PATH" mkdir -p /app/wheels /app/cuda_cache "$HF_HOME" "$TORCH_HOME" /app/wheels/src chmod -R 777 /app/wheels || true export CUDA_CACHE_PATH="/app/cuda_cache" # Preserva licença NGC (se existir) if [ -f "/NGC-DL-CONTAINER-LICENSE" ]; then cp -f /NGC-DL-CONTAINER-LICENSE /app/wheels/NGC-DL-CONTAINER-LICENSE || true fi # ===== DependĂȘncias mĂ­nimas ===== python -m pip install -v -U pip build setuptools wheel hatchling hatch-vcs scikit-build-core cmake ninja packaging "huggingface_hub[hf_transfer]" || true # ===== Tags de ambiente (Python/CUDA/Torch) ===== PY_TAG="$(python -c 'import sys; print(f"cp{sys.version_info[0]}{sys.version_info[1]}")' 2>/dev/null || echo cp310)" TORCH_VER="$(python - <<'PY' try: import torch, re v = torch.__version__ print(re.sub(r'\+.*$', '', v)) except Exception: print("unknown") PY )" CU_TAG="$(python - <<'PY' try: import torch cu = getattr(torch.version, "cuda", None) print("cu"+cu.replace(".","")) if cu else print("") except Exception: print("") PY )" echo "[env] PY_TAG=${PY_TAG} TORCH_VER=${TORCH_VER} CU_TAG=${CU_TAG}" # ============================================================================ # CHECKERS # ============================================================================ # Checa especificamente o mĂłdulo nativo requerido pelo layer_norm (sem checar 'flash-attn' geral) check_flash_layer_norm_bin () { python - <<'PY' import importlib ok = False # extensĂ”es conhecidas produzidas por csrc/layer_norm for name in [ "dropout_layer_norm", # nome do mĂłdulo nativo "flash_attn.ops.layer_norm", # wrapper python que usa o nativo "flash_attn.ops.rms_norm", # pode depender do mesmo backend em alguns empacotamentos ]: try: importlib.import_module(name) ok = True break except Exception: pass raise SystemExit(0 if ok else 1) PY } check_apex () { python - <<'PY' try: from apex.normalization import FusedLayerNorm import importlib; importlib.import_module("fused_layer_norm_cuda") ok = True except Exception: ok = False raise SystemExit(0 if ok else 1) PY } check_q8 () { python - <<'PY' import importlib.util spec = importlib.util.find_spec("ltx_q8_kernels") or importlib.util.find_spec("q8_kernels") raise SystemExit(0 if spec else 1) PY } # ============================================================================ # DOWNLOAD DO HUB (GENÉRICO) # ============================================================================ # Instala uma wheel do HF por prefixo simples (ex.: apex-, q8_kernels-) install_from_hf_by_prefix () { local PREFIX="$1" echo "[hub] Procurando wheels '${PREFIX}-*.whl' em ${SELF_HF_REPO_ID} com tags ${PY_TAG}/${CU_TAG}" python - "$PREFIX" "$PY_TAG" "$CU_TAG" <<'PY' || exit 0 import os, sys from huggingface_hub import HfApi, hf_hub_download, HfFolder prefix, py_tag, cu_tag = sys.argv[1], sys.argv[2], sys.argv[3] repo = os.environ.get("SELF_HF_REPO_ID","euIaxs22/Aduc-sdr") api = HfApi(token=os.getenv("HF_TOKEN") or HfFolder.get_token()) try: files = api.list_repo_files(repo_id=repo, repo_type="model") except Exception: raise SystemExit(0) def match(name: str) -> bool: return name.endswith(".whl") and name.rsplit("/",1)[-1].startswith(prefix + "-") and (py_tag in name) cands = [f for f in files if match(f)] pref = [f for f in cands if cu_tag and cu_tag in f] or cands if not pref: raise SystemExit(0) target = sorted(pref, reverse=True)[0] print(target) path = hf_hub_download(repo_id=repo, filename=target, repo_type="model", local_dir="/app/wheels") print(path) PY } # Instala wheels do submĂłdulo layer_norm aceitando variantes de nome install_flash_layer_norm_from_hf () { echo "[hub] Procurando wheels FlashAttention LayerNorm em ${SELF_HF_REPO_ID}" python - "$PY_TAG" "$CU_TAG" <<'PY' || exit 0 import os, sys, re from huggingface_hub import HfApi, hf_hub_download, HfFolder py_tag, cu_tag = sys.argv[1], sys.argv[2] repo = os.environ.get("SELF_HF_REPO_ID","euIaxs22/Aduc-sdr") api = HfApi(token=os.getenv("HF_TOKEN") or HfFolder.get_token()) try: files = api.list_repo_files(repo_id=repo, repo_type="model") except Exception: raise SystemExit(0) pats = [ r"^flash[_-]?attn[_-]?.*layer[_-]?norm-.*\.whl$", r"^dropout[_-]?layer[_-]?norm-.*\.whl$", ] def ok(fn: str) -> bool: name = fn.rsplit("/",1)[-1] if py_tag not in name: return False return any(re.search(p, name, flags=re.I) for p in pats) cands = [f for f in files if ok(f)] pref = [f for f in cands if cu_tag and cu_tag in f] or cands if not pref: raise SystemExit(0) target = sorted(pref, reverse=True)[0] print(target) path = hf_hub_download(repo_id=repo, filename=target, repo_type="model", local_dir="/app/wheels") print(path) PY } # ============================================================================ # BUILDERS # ============================================================================ # Passo extra: SIEMPRE tenta instalar o submĂłdulo layer_norm via wheel do HF; # se nĂŁo houver wheel compatĂ­vel, compila a partir de csrc/layer_norm e gera wheel. build_or_install_flash_layer_norm () { echo "[flow] === FlashAttn LayerNorm (passo extra) ===" # 1) Tentar instalar wheel do HF primeiro (evita recompilar) HF_OUT="$(install_flash_layer_norm_from_hf || true)" if [ -n "${HF_OUT:-}" ]; then WHEEL_PATH="$(printf "%s\n" "${HF_OUT}" | tail -n1)" echo "[hub] Baixado: ${WHEEL_PATH}" python -m pip install -v -U --no-build-isolation --no-deps "${WHEEL_PATH}" || true if check_flash_layer_norm_bin; then echo "[flow] FlashAttn LayerNorm: OK via wheel do Hub" return 0 fi echo "[flow] Wheel do Hub nĂŁo resolveu import; seguirĂĄ com build" else echo "[hub] Nenhuma wheel compatĂ­vel encontrada para FlashAttn LayerNorm" fi # 2) Build from source do submĂłdulo csrc/layer_norm -> wheel local SRC="/app/wheels/src/flash-attn" echo "[build] Preparando fonte FlashAttention (layer_norm) em ${SRC}" if [ -d "$SRC/.git" ]; then git -C "$SRC" fetch --all -p || true git -C "$SRC" reset --hard origin/main || true git -C "$SRC" clean -fdx || true else rm -rf "$SRC" git clone --depth 1 https://github.com/Dao-AILab/flash-attention "$SRC" fi # Define CC alvo a partir da GPU ativa (reduz tempo/ruĂ­do de build) export TORCH_CUDA_ARCH_LIST="$(python - <<'PY' import torch try: cc = "%d.%d" % torch.cuda.get_device_capability(0) print(cc) except Exception: print("8.9") # fallback p/ Ada (L40S) caso build sem GPU visĂ­vel PY )" echo "[build] TORCH_CUDA_ARCH_LIST=${TORCH_CUDA_ARCH_LIST}" pushd "$SRC/csrc/layer_norm" >/dev/null export MAX_JOBS="${MAX_JOBS:-90}" # Gera wheel reutilizĂĄvel python -m pip wheel -v --no-build-isolation --no-deps . -w /app/wheels || true popd >/dev/null # Instala a wheel gerada local W="$(ls -t /app/wheels/*flash*attn*layer*norm*-*.whl 2>/dev/null | head -n1 || true)" if [ -z "${W}" ]; then W="$(ls -t /app/wheels/*dropout*layer*norm*-*.whl 2>/dev/null | head -n1 || true)" fi if [ -z "${W}" ]; then # fallback para qualquer .whl recĂ©m gerado W="$(ls -t /app/wheels/*.whl 2>/dev/null | head -n1 || true)" fi if [ -n "${W}" ]; then python -m pip install -v -U --no-deps "${W}" || true echo "[build] FlashAttn LayerNorm instalado da wheel: ${W}" else echo "[build] Nenhuma wheel gerada; instalando direto do source (Ășltimo recurso)" python -m pip install -v --no-build-isolation "$SRC/csrc/layer_norm" || true fi # Checagem final do binĂĄrio if check_flash_layer_norm_bin; then echo "[flow] FlashAttn LayerNorm: import OK apĂłs build" return 0 fi echo "[flow] FlashAttn LayerNorm: falhou import apĂłs build" return 1 } build_apex () { local SRC="/app/wheels/src/apex" echo "[build] Preparando fonte Apex em ${SRC}" if [ -d "$SRC/.git" ]; then git -C "$SRC" fetch --all -p || true git -C "$SRC" reset --hard HEAD || true git -C "$SRC" clean -fdx || true else rm -rf "$SRC" git clone --depth 1 https://github.com/NVIDIA/apex "$SRC" fi echo "[build] Compilando Apex -> wheel" export APEX_CPP_EXT=1 APEX_CUDA_EXT=1 APEX_ALL_CONTRIB_EXT=0 python -m pip wheel -v --no-build-isolation --no-deps "$SRC" -w /app/wheels || true local W="$(ls -t /app/wheels/apex-*.whl 2>/dev/null | head -n1 || true)" if [ -n "${W}" ]; then python -m pip install -v -U --no-deps "${W}" || true echo "[build] Apex instalado da wheel recĂ©m-compilada: ${W}" else echo "[build] Nenhuma wheel Apex gerada; instalando do source" python -m pip install -v --no-build-isolation "$SRC" || true fi } Q8_REPO="${Q8_REPO:-https://github.com/Lightricks/LTX-Video-Q8-Kernels.git}" Q8_COMMIT="${Q8_COMMIT:-f3066edea210082799ca5a2bbf9ef0321c5dd8fc}" build_q8 () { local SRC="/app/wheels/src/q8_kernels" rm -rf "$SRC" git clone --filter=blob:none "$Q8_REPO" "$SRC" git -C "$SRC" checkout "$Q8_COMMIT" git -C "$SRC" submodule update --init --recursive echo "[build] Compilando Q8 Kernels -> wheel" python -m pip wheel -v --no-build-isolation "$SRC" -w /app/wheels || true local W="$(ls -t /app/wheels/q8_kernels-*.whl 2>/dev/null | head -n1 || true)" if [ -n "${W}" ]; then python -m pip install -v -U --no-deps "${W}" || true echo "[build] Q8 instalado da wheel recĂ©m-compilada: ${W}" else echo "[build] Nenhuma wheel q8_kernels gerada; instalando do source" python -m pip install -v --no-build-isolation "$SRC" || true fi } # ============================================================================ # EXECUÇÃO # ============================================================================ # Passo adicional SEM depender de "flash-attn" jĂĄ instalado: trata somente o layer_norm build_or_install_flash_layer_norm || true # Apex (mantido) # Tenta primeiro via wheel no HF e, se nĂŁo houver, compila e instala em wheel echo "[flow] === apex ===" HF_OUT="$(install_from_hf_by_prefix "apex" || true)" if [ -n "${HF_OUT:-}" ]; then WHEEL_PATH="$(printf "%s\n" "${HF_OUT}" | tail -n1)" echo "[hub] Baixado: ${WHEEL_PATH}" python -m pip install -v -U --no-build-isolation "${WHEEL_PATH}" || true if ! check_apex; then echo "[flow] apex: import falhou apĂłs wheel; compilando" build_apex || true fi else echo "[hub] Nenhuma wheel apex compatĂ­vel; compilando" build_apex || true fi # Q8 (opcional) # echo "[flow] === q8_kernels ===" # HF_OUT="$(install_from_hf_by_prefix "q8_kernels" || true)" # if [ -n "${HF_OUT:-}" ]; then # WHEEL_PATH="$(printf "%s\n" "${HF_OUT}" | tail -n1)" # echo "[hub] Baixado: ${WHEEL_PATH}" # python -m pip install -v -U --no-build-isolation "${WHEEL_PATH}" || true # if ! check_q8; then # echo "[flow] q8_kernels: import falhou apĂłs wheel; compilando" # build_q8 || true # fi # else # echo "[hub] Nenhuma wheel q8_kernels compatĂ­vel; compilando" # build_q8 || true # fi # Upload de wheels produzidas para o HF (cache cross-restarts) python - <<'PY' import os from huggingface_hub import HfApi, HfFolder repo = os.environ.get("SELF_HF_REPO_ID","euIaxs22/Aduc-sdr") token = os.getenv("HF_TOKEN") or HfFolder.get_token() if not token: raise SystemExit("HF_TOKEN ausente; upload desabilitado") api = HfApi(token=token) api.upload_folder( folder_path="/app/wheels", repo_id=repo, repo_type="model", allow_patterns=["*.whl","NGC-DL-CONTAINER-LICENSE"], ignore_patterns=["**/src/**","**/*.log","**/logs/**",".git/**"], ) print("Upload concluĂ­do (wheels + licença).") PY chmod -R 777 /app/wheels || true echo "✅ Builder finalizado."