[#2] deploying the model with `main_deploy.py`.
Browse files- config.yaml +1 -0
- idiomify/pipeline.py +2 -2
- main_deploy.py +41 -0
- requirements.txt +3 -1
config.yaml
CHANGED
|
@@ -4,6 +4,7 @@ idiomifier:
|
|
| 4 |
bart: facebook/bart-base
|
| 5 |
lr: 0.0001
|
| 6 |
literal2idiomatic_ver: d-1-2
|
|
|
|
| 7 |
max_epochs: 2
|
| 8 |
batch_size: 40
|
| 9 |
shuffle: true
|
|
|
|
| 4 |
bart: facebook/bart-base
|
| 5 |
lr: 0.0001
|
| 6 |
literal2idiomatic_ver: d-1-2
|
| 7 |
+
idioms_ver: d-1-2
|
| 8 |
max_epochs: 2
|
| 9 |
batch_size: 40
|
| 10 |
shuffle: true
|
idiomify/pipeline.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
from typing import List
|
| 2 |
from transformers import BartTokenizer
|
| 3 |
-
from builders import SourcesBuilder
|
| 4 |
-
from models import Idiomifier
|
| 5 |
|
| 6 |
|
| 7 |
class Pipeline:
|
|
|
|
| 1 |
from typing import List
|
| 2 |
from transformers import BartTokenizer
|
| 3 |
+
from idiomify.builders import SourcesBuilder
|
| 4 |
+
from idiomify.models import Idiomifier
|
| 5 |
|
| 6 |
|
| 7 |
class Pipeline:
|
main_deploy.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
we deploy the pipeline via streamlit.
|
| 3 |
+
"""
|
| 4 |
+
from typing import Tuple, List
|
| 5 |
+
import streamlit as st
|
| 6 |
+
from transformers import BartTokenizer
|
| 7 |
+
from idiomify.fetchers import fetch_config, fetch_idiomifier, fetch_idioms
|
| 8 |
+
from idiomify.pipeline import Pipeline
|
| 9 |
+
from idiomify.models import Idiomifier
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@st.cache(allow_output_mutation=True)
|
| 13 |
+
def fetch() -> Tuple[Idiomifier, BartTokenizer, List[str]]:
|
| 14 |
+
config = fetch_config()['idiomifier']
|
| 15 |
+
model = fetch_idiomifier(config['ver'])
|
| 16 |
+
idioms = fetch_idioms(config['idioms_ver'])
|
| 17 |
+
tokenizer = BartTokenizer.from_pretrained(config['bart'])
|
| 18 |
+
return model, tokenizer, idioms
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def main():
|
| 22 |
+
# fetch a pre-trained model
|
| 23 |
+
model, tokenizer, idioms = fetch()
|
| 24 |
+
pipeline = Pipeline(model, tokenizer)
|
| 25 |
+
st.title("Idiomify Demo")
|
| 26 |
+
text = st.text_area("Type sentences here",
|
| 27 |
+
value="Just remember there will always be a hope even when things look black")
|
| 28 |
+
with st.sidebar:
|
| 29 |
+
st.subheader("Supported idioms")
|
| 30 |
+
st.write(" / ".join(idioms))
|
| 31 |
+
|
| 32 |
+
if st.button(label="Idiomify"):
|
| 33 |
+
with st.spinner("Please wait..."):
|
| 34 |
+
sents = [sent for sent in text.split(".") if sent]
|
| 35 |
+
sents = pipeline(sents, max_length=200)
|
| 36 |
+
# highlight the rule & honorifics that were applied
|
| 37 |
+
st.write(". ".join(sents))
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
if __name__ == '__main__':
|
| 41 |
+
main()
|
requirements.txt
CHANGED
|
@@ -2,4 +2,6 @@ pytorch-lightning==1.5.10
|
|
| 2 |
transformers==4.16.2
|
| 3 |
wandb==0.12.10
|
| 4 |
scikit-learn==1.0.2
|
| 5 |
-
pandas==1.4.1
|
|
|
|
|
|
|
|
|
| 2 |
transformers==4.16.2
|
| 3 |
wandb==0.12.10
|
| 4 |
scikit-learn==1.0.2
|
| 5 |
+
pandas==1.4.1
|
| 6 |
+
streamlit==1.7.0
|
| 7 |
+
watchdog==2.1.6
|