File size: 12,538 Bytes
52d1c8b
 
a5720bf
 
 
52d1c8b
 
 
a5720bf
52d1c8b
a5720bf
d158086
 
 
a5720bf
d158086
 
 
 
 
 
 
 
 
52d1c8b
d158086
 
52d1c8b
 
 
 
 
d158086
52d1c8b
 
 
 
d158086
52d1c8b
 
 
 
 
d158086
 
 
52d1c8b
 
d158086
52d1c8b
 
d158086
 
52d1c8b
 
 
 
 
 
 
 
 
 
 
 
 
d158086
 
52d1c8b
 
 
d158086
52d1c8b
 
 
 
 
d158086
52d1c8b
 
 
d158086
52d1c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d158086
52d1c8b
 
 
 
d158086
52d1c8b
a5720bf
 
52d1c8b
 
 
 
d158086
a5720bf
 
d158086
 
 
 
 
52d1c8b
d158086
a5720bf
52d1c8b
a5720bf
52d1c8b
a5720bf
 
52d1c8b
a5720bf
d158086
a5720bf
 
 
94cdf7d
52d1c8b
a5720bf
 
 
52d1c8b
 
 
 
 
 
d158086
52d1c8b
 
 
 
 
 
 
94cdf7d
52d1c8b
94cdf7d
52d1c8b
 
 
 
d158086
52d1c8b
d158086
52d1c8b
d158086
 
 
 
 
 
52d1c8b
d158086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d1c8b
d158086
 
 
 
a5720bf
d158086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5720bf
d158086
52d1c8b
d158086
 
 
52d1c8b
d158086
 
 
 
 
 
52d1c8b
d158086
 
 
 
 
52d1c8b
d158086
 
 
 
 
 
 
 
52d1c8b
d158086
52d1c8b
d158086
52d1c8b
 
 
 
d158086
52d1c8b
d158086
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# api/seedvr_server.py

import os
import sys
import time
import subprocess
import queue
import multiprocessing as mp
from pathlib import Path
from typing import Optional, Callable

# --- 1. Import dos Módulos Compartilhados ---
# É crucial que estes imports venham antes dos imports pesados (torch, etc.)
# para que o ambiente de multiprocessing seja configurado corretamente.

try:
    # Importa o gerenciador de GPUs que centraliza a lógica de alocação
    from api.gpu_manager import gpu_manager
    # Importa o serviço do LTX para podermos comandá-lo a liberar a VRAM
    from api.ltx_server_refactored import video_generation_service
except ImportError:
    print("ERRO FATAL: Não foi possível importar `gpu_manager` ou `video_generation_service`.")
    print("Certifique-se de que os arquivos `gpu_manager.py` e `ltx_server_refactored.py` existem em `api/`.")
    sys.exit(1)


# --- 2. Configuração de Ambiente e CUDA ---
if mp.get_start_method(allow_none=True) != 'spawn':
    mp.set_start_method('spawn', force=True)

os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "backend:cudaMallocAsync")

# Adiciona o caminho do repositório SeedVR
SEEDVR_REPO_PATH = Path(os.getenv("SEEDVR_ROOT", "/data/SeedVR"))
if str(SEEDVR_REPO_PATH) not in sys.path:
    sys.path.insert(0, str(SEEDVR_REPO_PATH))

# Imports pesados
import torch
import cv2
import numpy as np
from datetime import datetime


# --- 3. Funções Auxiliares de Processamento (Workers e I/O) ---
# (Estas funções não precisam de alteração)

def extract_frames_from_video(video_path, debug=False, skip_first_frames=0, load_cap=None):
    if debug: print(f"🎬 [SeedVR] Extraindo frames de: {video_path}")
    if not os.path.exists(video_path): raise FileNotFoundError(f"Arquivo de vídeo não encontrado: {video_path}")
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened(): raise ValueError(f"Não foi possível abrir o vídeo: {video_path}")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frames = []
    frames_loaded = 0
    for i in range(frame_count):
        ret, frame = cap.read()
        if not ret: break
        if i < skip_first_frames: continue
        if load_cap and frames_loaded >= load_cap: break
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frames.append(frame.astype(np.float32) / 255.0)
        frames_loaded += 1
    cap.release()
    if not frames: raise ValueError(f"Nenhum frame extraído de: {video_path}")
    if debug: print(f"✅ [SeedVR] {len(frames)} frames extraídos com sucesso.")
    return torch.from_numpy(np.stack(frames)).to(torch.float16), fps

def save_frames_to_video(frames_tensor, output_path, fps=30.0, debug=False):
    if debug: print(f"💾 [SeedVR] Salvando {frames_tensor.shape[0]} frames em: {output_path}")
    os.makedirs(os.path.dirname(output_path), exist_ok=True)
    frames_np = (frames_tensor.cpu().numpy() * 255.0).astype(np.uint8)
    T, H, W, _ = frames_np.shape
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_path, fourcc, fps, (W, H))
    if not out.isOpened(): raise ValueError(f"Não foi possível criar o vídeo: {output_path}")
    for frame in frames_np:
        out.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
    out.release()
    if debug: print(f"✅ [SeedVR] Vídeo salvo com sucesso: {output_path}")

def _worker_process(proc_idx, device_id, frames_np, shared_args, return_queue, progress_queue=None):
    """Processo filho (worker) que executa o upscaling em uma GPU dedicada."""
    os.environ["CUDA_VISIBLE_DEVICES"] = str(device_id)
    os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "backend:cudaMallocAsync")
    
    import torch
    from src.core.model_manager import configure_runner
    from src.core.generation import generation_loop
    
    try:
        frames_tensor = torch.from_numpy(frames_np).to(torch.float16)
        callback = (lambda b, t, _, m: progress_queue.put((proc_idx, b, t, m))) if progress_queue else None

        runner = configure_runner(shared_args["model"], shared_args["model_dir"], shared_args["preserve_vram"], shared_args["debug"])
        result_tensor = generation_loop(
            runner=runner, images=frames_tensor, cfg_scale=1.0, seed=shared_args["seed"],
            res_w=shared_args["resolution"], batch_size=shared_args["batch_size"],
            preserve_vram=shared_args["preserve_vram"], temporal_overlap=0,
            debug=shared_args["debug"], progress_callback=callback
        )
        return_queue.put((proc_idx, result_tensor.cpu().numpy()))
    except Exception as e:
        import traceback
        error_msg = f"ERRO no worker {proc_idx} (GPU {device_id}): {e}\n{traceback.format_exc()}"
        print(error_msg)
        if progress_queue: progress_queue.put((proc_idx, -1, -1, error_msg))
        return_queue.put((proc_idx, error_msg))

# --- 4. CLASSE DO SERVIDOR PRINCIPAL ---

class SeedVRServer:
    def __init__(self, **kwargs):
        """Inicializa o servidor, define os caminhos e prepara o ambiente."""
        print("⚙️ SeedVRServer inicializando...")
        self.SEEDVR_ROOT = SEEDVR_REPO_PATH
        self.CKPTS_ROOT = Path("/data/seedvr_models_fp16")
        self.OUTPUT_ROOT = Path(os.getenv("OUTPUT_ROOT", "/app/output"))
        self.HF_HOME_CACHE = Path(os.getenv("HF_HOME", "/data/.cache/huggingface"))
        self.REPO_URL = os.getenv("SEEDVR_GIT_URL", "https://github.com/numz/ComfyUI-SeedVR2_VideoUpscaler")
        
        # OBTÉM AS GPUS ALOCADAS PELO GERENCIADOR CENTRAL
        self.device_list = gpu_manager.get_seedvr_devices()
        self.num_gpus = len(self.device_list)
        print(f"[SeedVR] Alocado para usar {self.num_gpus} GPU(s): {self.device_list}")

        for p in [self.CKPTS_ROOT, self.OUTPUT_ROOT, self.HF_HOME_CACHE]:
            p.mkdir(parents=True, exist_ok=True)

        self.setup_dependencies()
        print("📦 SeedVRServer pronto.")

    def setup_dependencies(self):
        """Garante que o repositório e os modelos estão presentes."""
        if not (self.SEEDVR_ROOT / ".git").exists():
            print(f"[SeedVR] Clonando repositório para {self.SEEDVR_ROOT}...")
            subprocess.run(["git", "clone", "--depth", "1", self.REPO_URL, str(self.SEEDVR_ROOT)], check=True)
        
        model_files = {
            "seedvr2_ema_7b_sharp_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses",
            "ema_vae_fp16.safetensors": "MonsterMMORPG/SeedVR2_SECourses"
        }
        for filename, repo_id in model_files.items():
            if not (self.CKPTS_ROOT / filename).exists():
                print(f"Baixando {filename}...")
                from huggingface_hub import hf_hub_download
                hf_hub_download(
                    repo_id=repo_id, filename=filename, local_dir=str(self.CKPTS_ROOT),
                    cache_dir=str(self.HF_HOME_CACHE), token=os.getenv("HF_TOKEN")
                )
        print("[SeedVR] Checkpoints verificados.")

    def run_inference(
        self,
        file_path: str, *,
        seed: int,
        resolution: int,
        batch_size: int,
        model: str = "seedvr2_ema_7b_sharp_fp16.safetensors",
        fps: Optional[float] = None,
        debug: bool = True,
        preserve_vram: bool = True,
        progress: Optional[Callable] = None
    ) -> str:
        """
        Executa o pipeline completo de upscaling de vídeo, gerenciando a memória da GPU.
        """
        if progress: progress(0.01, "⌛ Inicializando inferência SeedVR...")

        # --- NÓ 1: GERENCIAMENTO DE MEMÓRIA (SWAP) ---
        if gpu_manager.requires_memory_swap():
            print("[SWAP] SeedVR precisa da GPU. Movendo LTX para a CPU...")
            if progress: progress(0.02, "🔄 Liberando VRAM para o SeedVR...")
            video_generation_service.move_to_cpu()
            print("[SWAP] LTX movido para a CPU. VRAM liberada.")

        try:
            # --- NÓ 2: EXTRAÇÃO DE FRAMES ---
            if progress: progress(0.05, "🎬 Extraindo frames do vídeo...")
            frames_tensor, original_fps = extract_frames_from_video(file_path, debug)

            # --- NÓ 3: DIVISÃO PARA MULTI-GPU ---
            if self.num_gpus == 0:
                raise RuntimeError("SeedVR requer pelo menos 1 GPU alocada, mas não encontrou nenhuma.")
            
            print(f"[SeedVR] Dividindo {frames_tensor.shape[0]} frames em {self.num_gpus} chunks para processamento paralelo.")
            chunks = torch.chunk(frames_tensor, self.num_gpus, dim=0)
            
            manager = mp.Manager()
            return_queue = manager.Queue()
            progress_queue = manager.Queue() if progress else None
            
            shared_args = {
                "model": model, "model_dir": str(self.CKPTS_ROOT), "preserve_vram": preserve_vram,
                "debug": debug, "seed": seed, "resolution": resolution, "batch_size": batch_size
            }

            # --- NÓ 4: INÍCIO DOS WORKERS ---
            if progress: progress(0.1, f"🚀 Iniciando geração em {self.num_gpus} GPU(s)...")
            workers = []
            for idx, device_id in enumerate(self.device_list):
                p = mp.Process(target=_worker_process, args=(idx, device_id, chunks[idx].cpu().numpy(), shared_args, return_queue, progress_queue))
                p.start()
                workers.append(p)
            
            # --- NÓ 5: COLETA DE RESULTADOS E MONITORAMENTO ---
            results_np = [None] * self.num_gpus
            finished_workers = 0
            worker_progress = [0.0] * self.num_gpus
            while finished_workers < self.num_gpus:
                if progress_queue:
                    while not progress_queue.empty():
                        try:
                            p_idx, b_idx, b_total, msg = progress_queue.get_nowait()
                            if b_idx == -1: raise RuntimeError(f"Erro no Worker {p_idx}: {msg}")
                            if b_total > 0: worker_progress[p_idx] = b_idx / b_total
                            total_progress = sum(worker_progress) / self.num_gpus
                            progress(0.1 + total_progress * 0.85, desc=f"GPU {p_idx+1}/{self.num_gpus}: {msg}")
                        except queue.Empty: pass
                
                try:
                    proc_idx, result = return_queue.get(timeout=0.2)
                    if isinstance(result, str): raise RuntimeError(f"Worker {proc_idx} falhou: {result}")
                    results_np[proc_idx] = result
                    worker_progress[proc_idx] = 1.0
                    finished_workers += 1
                except queue.Empty: pass

            for p in workers: p.join()

            # --- NÓ 6: FINALIZAÇÃO ---
            if any(r is None for r in results_np):
                raise RuntimeError("Um ou mais workers falharam ao retornar um resultado.")

            result_tensor = torch.from_numpy(np.concatenate(results_np, axis=0)).to(torch.float16)
            if progress: progress(0.95, "💾 Salvando o vídeo final...")
            
            out_dir = self.OUTPUT_ROOT / f"run_{int(time.time())}_{Path(file_path).stem}"
            out_dir.mkdir(parents=True, exist_ok=True)
            output_filepath = out_dir / f"result_{Path(file_path).stem}.mp4"

            final_fps = fps if fps and fps > 0 else original_fps
            save_frames_to_video(result_tensor, str(output_filepath), final_fps, debug)
            
            print(f"✅ Vídeo salvo com sucesso em: {output_filepath}")
            return str(output_filepath)

        finally:
            # --- NÓ 7: RESTAURAÇÃO DE MEMÓRIA (SWAP BACK) ---
            if gpu_manager.requires_memory_swap():
                print("[SWAP] Inferência do SeedVR concluída. Movendo LTX de volta para a GPU...")
                if progress: progress(0.99, "🔄 Restaurando o ambiente LTX...")
                ltx_device = gpu_manager.get_ltx_device()
                video_generation_service.move_to_device(ltx_device)
                print(f"[SWAP] LTX de volta em {ltx_device}.")

# --- PONTO DE ENTRADA ---
if __name__ == "__main__":
    print("🚀 Executando o servidor SeedVR em modo autônomo para inicialização...")
    try:
        server = SeedVRServer()
        print("✅ Servidor inicializado com sucesso. Pronto para receber chamadas.")
    except Exception as e:
        print(f"❌ Falha ao inicializar o servidor SeedVR: {e}")
        traceback.print_exc()
        sys.exit(1)