Spaces:
Paused
Paused
| # ltx_server_clean_refactor.py — VideoService (Modular Version with Simple Overlap Chunking) | |
| # ============================================================================== | |
| # 0. CONFIGURAÇÃO DE AMBIENTE E IMPORTAÇÕES | |
| # ============================================================================== | |
| import os | |
| import sys | |
| import gc | |
| import yaml | |
| import time | |
| import json | |
| import random | |
| import shutil | |
| import warnings | |
| import tempfile | |
| import traceback | |
| import subprocess | |
| from pathlib import Path | |
| from typing import List, Dict, Optional, Tuple, Union | |
| import cv2 | |
| # --- Configurações de Logging e Avisos --- | |
| warnings.filterwarnings("ignore", category=UserWarning) | |
| warnings.filterwarnings("ignore", category=FutureWarning) | |
| from huggingface_hub import logging as hf_logging | |
| hf_logging.set_verbosity_error() | |
| # --- Importações de Bibliotecas de ML/Processamento --- | |
| import torch | |
| import torch.nn.functional as F | |
| import numpy as np | |
| from PIL import Image | |
| from einops import rearrange | |
| from huggingface_hub import hf_hub_download | |
| from safetensors import safe_open | |
| from managers.vae_manager import vae_manager_singleton | |
| from tools.video_encode_tool import video_encode_tool_singleton | |
| from api.aduc_ltx_latent_patch import LTXLatentConditioningPatch, PatchedConditioningItem | |
| # --- Constantes Globais --- | |
| LTXV_DEBUG = True # Mude para False para desativar logs de debug | |
| LTXV_FRAME_LOG_EVERY = 8 | |
| DEPS_DIR = Path("/data") | |
| LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video" | |
| RESULTS_DIR = Path("/app/output") | |
| DEFAULT_FPS = 24.0 | |
| # ============================================================================== | |
| # 1. SETUP E FUNÇÕES AUXILIARES DE AMBIENTE | |
| # ============================================================================== | |
| def _run_setup_script(): | |
| """Executa o script setup.py se o repositório LTX-Video não existir.""" | |
| setup_script_path = "setup.py" | |
| if not os.path.exists(setup_script_path): | |
| print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.") | |
| return | |
| print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Executando setup.py...") | |
| try: | |
| subprocess.run([sys.executable, setup_script_path], check=True, capture_output=True, text=True) | |
| print("[DEBUG] Script 'setup.py' concluído com sucesso.") | |
| except subprocess.CalledProcessError as e: | |
| print(f"[ERROR] Falha ao executar 'setup.py' (código {e.returncode}).\nOutput:\n{e.stdout}\n{e.stderr}") | |
| sys.exit(1) | |
| def add_deps_to_path(repo_path: Path): | |
| """Adiciona o diretório do repositório ao sys.path para importações locais.""" | |
| resolved_path = str(repo_path.resolve()) | |
| if resolved_path not in sys.path: | |
| sys.path.insert(0, resolved_path) | |
| if LTXV_DEBUG: | |
| print(f"[DEBUG] Adicionado ao sys.path: {resolved_path}") | |
| # --- Execução da configuração inicial --- | |
| if not LTX_VIDEO_REPO_DIR.exists(): | |
| _run_setup_script() | |
| add_deps_to_path(LTX_VIDEO_REPO_DIR) | |
| # --- Importações Dependentes do Path Adicionado --- | |
| from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents | |
| from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent | |
| from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler | |
| from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXVideoPipeline | |
| from transformers import T5EncoderModel, T5Tokenizer, AutoModelForCausalLM, AutoProcessor, AutoTokenizer | |
| from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder | |
| from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier | |
| from ltx_video.models.transformers.transformer3d import Transformer3DModel | |
| from ltx_video.schedulers.rf import RectifiedFlowScheduler | |
| from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy | |
| import ltx_video.pipelines.crf_compressor as crf_compressor | |
| def create_latent_upsampler(latent_upsampler_model_path: str, device: str): | |
| latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path) | |
| latent_upsampler.to(device) | |
| latent_upsampler.eval() | |
| return latent_upsampler | |
| def create_ltx_video_pipeline( | |
| ckpt_path: str, | |
| precision: str, | |
| text_encoder_model_name_or_path: str, | |
| sampler: Optional[str] = None, | |
| device: Optional[str] = None, | |
| enhance_prompt: bool = False, | |
| prompt_enhancer_image_caption_model_name_or_path: Optional[str] = None, | |
| prompt_enhancer_llm_model_name_or_path: Optional[str] = None, | |
| ) -> LTXVideoPipeline: | |
| ckpt_path = Path(ckpt_path) | |
| assert os.path.exists( | |
| ckpt_path | |
| ), f"Ckpt path provided (--ckpt_path) {ckpt_path} does not exist" | |
| with safe_open(ckpt_path, framework="pt") as f: | |
| metadata = f.metadata() | |
| config_str = metadata.get("config") | |
| configs = json.loads(config_str) | |
| allowed_inference_steps = configs.get("allowed_inference_steps", None) | |
| vae = CausalVideoAutoencoder.from_pretrained(ckpt_path) | |
| transformer = Transformer3DModel.from_pretrained(ckpt_path) | |
| # Use constructor if sampler is specified, otherwise use from_pretrained | |
| if sampler == "from_checkpoint" or not sampler: | |
| scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path) | |
| else: | |
| scheduler = RectifiedFlowScheduler( | |
| sampler=("Uniform" if sampler.lower() == "uniform" else "LinearQuadratic") | |
| ) | |
| text_encoder = T5EncoderModel.from_pretrained( | |
| text_encoder_model_name_or_path, subfolder="text_encoder" | |
| ) | |
| patchifier = SymmetricPatchifier(patch_size=1) | |
| tokenizer = T5Tokenizer.from_pretrained( | |
| text_encoder_model_name_or_path, subfolder="tokenizer" | |
| ) | |
| transformer = transformer.to(device) | |
| vae = vae.to(device) | |
| text_encoder = text_encoder.to(device) | |
| if enhance_prompt: | |
| prompt_enhancer_image_caption_model = AutoModelForCausalLM.from_pretrained( | |
| prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True | |
| ) | |
| prompt_enhancer_image_caption_processor = AutoProcessor.from_pretrained( | |
| prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True | |
| ) | |
| prompt_enhancer_llm_model = AutoModelForCausalLM.from_pretrained( | |
| prompt_enhancer_llm_model_name_or_path, | |
| torch_dtype="bfloat16", | |
| ) | |
| prompt_enhancer_llm_tokenizer = AutoTokenizer.from_pretrained( | |
| prompt_enhancer_llm_model_name_or_path, | |
| ) | |
| else: | |
| prompt_enhancer_image_caption_model = None | |
| prompt_enhancer_image_caption_processor = None | |
| prompt_enhancer_llm_model = None | |
| prompt_enhancer_llm_tokenizer = None | |
| vae = vae.to(torch.bfloat16) | |
| if precision == "bfloat16" and transformer.dtype != torch.bfloat16: | |
| transformer = transformer.to(torch.bfloat16) | |
| text_encoder = text_encoder.to(torch.bfloat16) | |
| # Use submodels for the pipeline | |
| submodel_dict = { | |
| "transformer": transformer, | |
| "patchifier": patchifier, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "prompt_enhancer_image_caption_model": prompt_enhancer_image_caption_model, | |
| "prompt_enhancer_image_caption_processor": prompt_enhancer_image_caption_processor, | |
| "prompt_enhancer_llm_model": prompt_enhancer_llm_model, | |
| "prompt_enhancer_llm_tokenizer": prompt_enhancer_llm_tokenizer, | |
| "allowed_inference_steps": allowed_inference_steps, | |
| } | |
| pipeline = LTXVideoPipeline(**submodel_dict) | |
| LTXLatentConditioningPatch.apply() | |
| pipeline = pipeline.to(device) | |
| return pipeline | |
| # ============================================================================== | |
| # 2. FUNÇÕES AUXILIARES DE PROCESSAMENTO | |
| # ============================================================================== | |
| def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]: | |
| """Calcula o preenchimento para centralizar uma imagem em uma nova dimensão.""" | |
| pad_h = target_h - orig_h | |
| pad_w = target_w - orig_w | |
| pad_top = pad_h // 2 | |
| pad_bottom = pad_h - pad_top | |
| pad_left = pad_w // 2 | |
| pad_right = pad_w - pad_left | |
| return (pad_left, pad_right, pad_top, pad_bottom) | |
| def log_tensor_info(tensor: torch.Tensor, name: str = "Tensor"): | |
| """Exibe informações detalhadas sobre um tensor para depuração.""" | |
| if not isinstance(tensor, torch.Tensor): | |
| print(f"\n[INFO] '{name}' não é um tensor.") | |
| return | |
| print(f"\n--- Tensor Info: {name} ---") | |
| print(f" - Shape: {tuple(tensor.shape)}") | |
| print(f" - Dtype: {tensor.dtype}") | |
| print(f" - Device: {tensor.device}") | |
| if tensor.numel() > 0: | |
| try: | |
| print(f" - Stats: Min={tensor.min().item():.4f}, Max={tensor.max().item():.4f}, Mean={tensor.mean().item():.4f}") | |
| except RuntimeError: | |
| print(" - Stats: Não foi possível calcular (ex: tensores bool).") | |
| print("-" * 30) | |
| # ============================================================================== | |
| # 3. CLASSE PRINCIPAL DO SERVIÇO DE VÍDEO | |
| # ============================================================================== | |
| class VideoService: | |
| """ | |
| Serviço encapsulado para gerar vídeos usando a pipeline LTX-Video. | |
| Gerencia o carregamento de modelos, pré-processamento, geração em múltiplos | |
| passos (baixa resolução, upscale com denoise) e pós-processamento. | |
| """ | |
| def __init__(self): | |
| """Inicializa o serviço, carregando configurações e modelos.""" | |
| t0 = time.perf_counter() | |
| print("[INFO] Inicializando VideoService...") | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| self.config = self._load_config("ltxv-13b-0.9.8-distilled-fp8.yaml") | |
| self.pipeline, self.latent_upsampler = self._load_models_from_hub() | |
| self._move_models_to_device() | |
| self.runtime_autocast_dtype = self._get_precision_dtype() | |
| vae_manager_singleton.attach_pipeline( | |
| self.pipeline, | |
| device=self.device, | |
| autocast_dtype=self.runtime_autocast_dtype | |
| ) | |
| self._tmp_dirs = set() | |
| RESULTS_DIR.mkdir(exist_ok=True) | |
| print(f"[INFO] VideoService pronto. Tempo de inicialização: {time.perf_counter()-t0:.2f}s") | |
| # -------------------------------------------------------------------------- | |
| # --- Métodos Públicos (API do Serviço) --- | |
| # -------------------------------------------------------------------------- | |
| def _load_image_to_tensor_with_resize_and_crop( | |
| self, | |
| image_input: Union[str, Image.Image], | |
| target_height: int = 512, | |
| target_width: int = 768, | |
| just_crop: bool = False, | |
| ) -> torch.Tensor: | |
| """Load and process an image into a tensor. | |
| Args: | |
| image_input: Either a file path (str) or a PIL Image object | |
| target_height: Desired height of output tensor | |
| target_width: Desired width of output tensor | |
| just_crop: If True, only crop the image to the target size without resizing | |
| """ | |
| if isinstance(image_input, str): | |
| image = Image.open(image_input).convert("RGB") | |
| elif isinstance(image_input, Image.Image): | |
| image = image_input | |
| else: | |
| raise ValueError("image_input must be either a file path or a PIL Image object") | |
| input_width, input_height = image.size | |
| aspect_ratio_target = target_width / target_height | |
| aspect_ratio_frame = input_width / input_height | |
| if aspect_ratio_frame > aspect_ratio_target: | |
| new_width = int(input_height * aspect_ratio_target) | |
| new_height = input_height | |
| x_start = (input_width - new_width) // 2 | |
| y_start = 0 | |
| else: | |
| new_width = input_width | |
| new_height = int(input_width / aspect_ratio_target) | |
| x_start = 0 | |
| y_start = (input_height - new_height) // 2 | |
| image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height)) | |
| if not just_crop: | |
| image = image.resize((target_width, target_height)) | |
| image = np.array(image) | |
| image = cv2.GaussianBlur(image, (3, 3), 0) | |
| frame_tensor = torch.from_numpy(image).float() | |
| frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0 | |
| frame_tensor = frame_tensor.permute(2, 0, 1) | |
| frame_tensor = (frame_tensor / 127.5) - 1.0 | |
| # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width) | |
| return frame_tensor.unsqueeze(0).unsqueeze(2) | |
| # ADICIONE A FUNÇÃO ABAIXO | |
| def _image_to_latents(self, image_input: Union[str, Image.Image], height: int, width: int) -> torch.Tensor: | |
| """ | |
| Converte uma imagem (caminho ou PIL) em um tensor de latentes 5D. | |
| Retorna: Tensor na forma [1, C_lat, 1, H_lat, W_lat] | |
| """ | |
| print(f"[DEBUG] Codificando imagem para latente ({height}x{width})...") | |
| # 1. Carrega a imagem e a transforma em um tensor de pixel 5D | |
| pixel_tensor = self._load_image_to_tensor_with_resize_and_crop( | |
| image_input, target_height=height, target_width=width | |
| ) | |
| pixel_tensor_gpu = pixel_tensor.to(self.device, dtype=self.pipeline.vae.dtype) | |
| # 2. Usa a VAE para codificar o tensor de pixel em um tensor de latentes | |
| with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')): | |
| # O vae_encode da pipeline já lida com tensores 5D | |
| latents = self.pipeline.vae.encode(pixel_tensor_gpu).latent_dist.sample() | |
| # 3. Aplica o fator de escala (importante para consistência) | |
| if hasattr(self.pipeline.vae.config, "scaling_factor"): | |
| latents = latents * self.pipeline.vae.config.scaling_factor | |
| print(f"[DEBUG] Imagem codificada para latente com shape: {latents.shape}") | |
| return latents | |
| def _prepare_condition_items(self, items_list: List[Tuple], height: int, width: int) -> List[PatchedConditioningItem]: | |
| """ | |
| Prepara os itens de condicionamento. | |
| Recebe uma lista [Imagem, frame, peso], converte a Imagem para LATENTE | |
| e cria uma lista de PatchedConditioningItem com o tensor em `latents`. | |
| """ | |
| if not items_list: | |
| return [] | |
| conditioning_items = [] | |
| for media_input, frame_idx, weight in items_list: | |
| # 1. USA A NOVA FUNÇÃO PARA OBTER O TENSOR DE LATENTES DIRETAMENTE | |
| latent_tensor = self._image_to_latents(media_input, height, width) | |
| safe_frame_idx = int(frame_idx) | |
| # 2. CRIA O PatchedConditioningItem COM O CAMPO `latents` PREENCHIDO | |
| item = PatchedConditioningItem( | |
| media_frame_number=safe_frame_idx, | |
| conditioning_strength=float(weight), | |
| media_item=None, # Importante: media_item é None | |
| latents=latent_tensor # O latente pré-calculado vai aqui! | |
| ) | |
| conditioning_items.append(item) | |
| print(f"[INFO] Preparados {len(conditioning_items)} itens de condicionamento com latentes pré-codificados.") | |
| return conditioning_items | |
| def generate_low_resolution( | |
| self, | |
| prompt: str, | |
| negative_prompt: str, | |
| height: int, | |
| width: int, | |
| duration_secs: float, | |
| guidance_scale: float, | |
| seed: Optional[int] = None, | |
| conditioning_items: Optional[List[PatchedConditioningItem]] = None | |
| ) -> Tuple[str, str, int]: | |
| """ | |
| ETAPA 1: Gera um vídeo e latentes em resolução base a partir de um prompt e | |
| condicionamentos opcionais. | |
| """ | |
| print("[INFO] Iniciando ETAPA 1: Geração de Baixa Resolução...") | |
| # --- Configuração de Seed e Diretórios --- | |
| used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed) | |
| #seed_everything(used_seed) | |
| print(f" - Usando Seed: {used_seed}") | |
| temp_dir = tempfile.mkdtemp(prefix="ltxv_low_") | |
| self._register_tmp_dir(temp_dir) | |
| results_dir = "/app/output" | |
| os.makedirs(results_dir, exist_ok=True) | |
| # --- Cálculo de Dimensões e Frames --- | |
| actual_num_frames = int(round(duration_secs * DEFAULT_FPS)) | |
| downscaled_height = height | |
| downscaled_width = width | |
| #self._calculate_downscaled_dims(height, width) | |
| print(f" - Frames: {actual_num_frames}, Duração: {duration_secs}s") | |
| print(f" - Dimensões de Saída: {downscaled_height}x{downscaled_width}") | |
| # --- Execução da Pipeline --- | |
| with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')): | |
| first_pass_kwargs = { | |
| "prompt": prompt, | |
| "negative_prompt": negative_prompt, | |
| "height": downscaled_height, | |
| "width": downscaled_width, | |
| "num_frames": (actual_num_frames//8)+1, | |
| "frame_rate": int(DEFAULT_FPS), | |
| "generator": torch.Generator(device=self.device).manual_seed(used_seed), | |
| "output_type": "latent", | |
| "vae_per_channel_normalize": True, | |
| "is_video": True, | |
| "conditioning_items": conditioning_items, | |
| "guidance_scale": float(guidance_scale), | |
| **(self.config.get("first_pass", {})) | |
| } | |
| print(" - Enviando para a pipeline LTX...") | |
| latents = self.pipeline(**first_pass_kwargs).images | |
| print(f" - Latentes gerados com shape: {latents.shape}") | |
| # Decodifica os latentes para pixels para criar o vídeo de preview | |
| pixel_tensor = vae_manager_singleton.decode(latents, decode_timestep=float(self.config.get("decode_timestep", 0.05))) | |
| tensor_path = self._save_latents_to_disk(latents, "latents_low_res", used_seed) | |
| final_video_path = self._save_video_from_tensor(pixel_tensor, f"final_video_{seed}", seed, temp_dir, fps=DEFAULT_FPS) | |
| return final_video_path | |
| # --- Limpeza --- | |
| self._finalize() | |
| print("[SUCCESS] ETAPA 1 Concluída.") | |
| return final_video_path, tensor_path, used_seed | |
| # -------------------------------------------------------------------------- | |
| # --- Métodos Internos e Auxiliares --- | |
| # -------------------------------------------------------------------------- | |
| def _finalize(self): | |
| """Limpa a memória da GPU e os diretórios temporários.""" | |
| if LTXV_DEBUG: | |
| print("[DEBUG] Finalize: iniciando limpeza...") | |
| gc.collect() | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| # Limpa todos os diretórios temporários registrados | |
| for d in list(self._tmp_dirs): | |
| shutil.rmtree(d, ignore_errors=True) | |
| self._tmp_dirs.remove(d) | |
| if LTXV_DEBUG: | |
| print(f"[DEBUG] Diretório temporário removido: {d}") | |
| def _save_latents_to_disk(self, latents_tensor: torch.Tensor, base_filename: str, seed: int) -> str: | |
| """Salva um tensor de latentes em um arquivo .pt.""" | |
| latents_cpu = latents_tensor.detach().to("cpu") | |
| tensor_path = RESULTS_DIR / f"{base_filename}_{seed}.pt" | |
| torch.save(latents_cpu, tensor_path) | |
| if LTXV_DEBUG: | |
| print(f"[DEBUG] Latentes salvos em: {tensor_path}") | |
| return str(tensor_path) | |
| def _save_video_from_tensor(self, pixel_tensor: torch.Tensor, base_filename: str, seed: int, temp_dir: str, fps: int = int(DEFAULT_FPS)) -> str: | |
| """Salva um tensor de pixels como um arquivo de vídeo MP4.""" | |
| temp_path = os.path.join(temp_dir, f"{base_filename}_{seed}.mp4") | |
| video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=DEFAULT_FPS) | |
| final_path = RESULTS_DIR / f"{base_filename}_{seed}.mp4" | |
| shutil.move(temp_path, final_path) | |
| print(f"[INFO] Vídeo final salvo em: {final_path}") | |
| return str(final_path) | |
| def _load_config(self, config_filename: str) -> Dict: | |
| """Carrega o arquivo de configuração YAML.""" | |
| config_path = LTX_VIDEO_REPO_DIR / "configs" / config_filename | |
| print(f"[INFO] Carregando configuração de: {config_path}") | |
| with open(config_path, "r") as file: | |
| return yaml.safe_load(file) | |
| def _load_models_from_hub(self): | |
| """Baixa e cria as instâncias da pipeline e do upsampler.""" | |
| t0 = time.perf_counter() | |
| LTX_REPO = "Lightricks/LTX-Video" | |
| print("[INFO] Baixando checkpoint principal...") | |
| self.config["checkpoint_path"] = hf_hub_download( | |
| repo_id=LTX_REPO, filename=self.config["checkpoint_path"], | |
| token=os.getenv("HF_TOKEN") | |
| ) | |
| print(f"[INFO] Checkpoint principal em: {self.config['checkpoint_path']}") | |
| print("[INFO] Construindo pipeline...") | |
| pipeline = create_ltx_video_pipeline( | |
| ckpt_path=self.config["checkpoint_path"], | |
| precision=self.config["precision"], | |
| text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"], | |
| sampler=self.config["sampler"], | |
| device="cpu", # Carrega em CPU primeiro | |
| enhance_prompt=False | |
| ) | |
| print("[INFO] Pipeline construída.") | |
| latent_upsampler = None | |
| if self.config.get("spatial_upscaler_model_path"): | |
| print("[INFO] Baixando upscaler espacial...") | |
| self.config["spatial_upscaler_model_path"] = hf_hub_download( | |
| repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"], | |
| token=os.getenv("HF_TOKEN") | |
| ) | |
| print(f"[INFO] Upscaler em: {self.config['spatial_upscaler_model_path']}") | |
| print("[INFO] Construindo latent_upsampler...") | |
| latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu") | |
| print("[INFO] Latent upsampler construído.") | |
| print(f"[INFO] Carregamento de modelos concluído em {time.perf_counter()-t0:.2f}s") | |
| return pipeline, latent_upsampler | |
| def _move_models_to_device(self): | |
| """Move os modelos carregados para o dispositivo de computação (GPU/CPU).""" | |
| print(f"[INFO] Movendo modelos para o dispositivo: {self.device}") | |
| self.pipeline.to(self.device) | |
| if self.latent_upsampler: | |
| self.latent_upsampler.to(self.device) | |
| def _get_precision_dtype(self) -> torch.dtype: | |
| """Determina o dtype para autocast com base na configuração de precisão.""" | |
| prec = str(self.config.get("precision", "")).lower() | |
| if prec in ["float8_e4m3fn", "bfloat16"]: | |
| return torch.bfloat16 | |
| elif prec == "mixed_precision": | |
| return torch.float16 | |
| return torch.float32 | |
| def _upsample_and_filter_latents(self, latents: torch.Tensor) -> torch.Tensor: | |
| """Aplica o upsample espacial e o filtro AdaIN aos latentes.""" | |
| if not self.latent_upsampler: | |
| raise ValueError("Latent Upsampler não está carregado para a operação de upscale.") | |
| latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True) | |
| upsampled_latents_unnormalized = self.latent_upsampler(latents_unnormalized) | |
| upsampled_latents_normalized = normalize_latents(upsampled_latents_unnormalized, self.pipeline.vae, vae_per_channel_normalize=True) | |
| # Filtro AdaIN para manter consistência de cor/estilo com o vídeo de baixa resolução | |
| return adain_filter_latent(latents=upsampled_latents_normalized, reference_latents=latents) | |
| def _prepare_conditioning_tensor_from_path(self, filepath: str, height: int, width: int, padding: Tuple) -> torch.Tensor: | |
| """Carrega uma imagem, redimensiona, aplica padding e move para o dispositivo.""" | |
| tensor = self._load_image_to_tensor_with_resize_and_crop(filepath, height, width) | |
| tensor = F.pad(tensor, padding) | |
| return tensor.to(self.device, dtype=self.runtime_autocast_dtype) | |
| def _calculate_downscaled_dims(self, height: int, width: int) -> Tuple[int, int]: | |
| """Calcula as dimensões para o primeiro passo (baixa resolução).""" | |
| height_padded = ((height - 1) // 8 + 1) * 8 | |
| width_padded = ((width - 1) // 8 + 1) * 8 | |
| downscale_factor = self.config.get("downscale_factor", 0.6666666) | |
| vae_scale_factor = self.pipeline.vae_scale_factor | |
| target_w = int(width_padded * downscale_factor) | |
| downscaled_width = target_w - (target_w % vae_scale_factor) | |
| target_h = int(height_padded * downscale_factor) | |
| downscaled_height = target_h - (target_h % vae_scale_factor) | |
| return downscaled_height, downscaled_width | |
| def _seed_everething(self, seed: int): | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(seed) | |
| if torch.backends.mps.is_available(): | |
| torch.mps.manual_seed(seed) | |
| def _register_tmp_dir(self, dir_path: str): | |
| """Registra um diretório temporário para limpeza posterior.""" | |
| if dir_path and os.path.isdir(dir_path): | |
| self._tmp_dirs.add(dir_path) | |
| if LTXV_DEBUG: | |
| print(f"[DEBUG] Diretório temporário registrado: {dir_path}") | |
| # ============================================================================== | |
| # 4. INSTANCIAÇÃO E PONTO DE ENTRADA (Exemplo) | |
| # ============================================================================== | |
| print("Criando instância do VideoService. O carregamento do modelo começará agora...") | |
| video_generation_service = VideoService() | |
| print("Instância do VideoService pronta para uso.") |