Spaces:
Paused
Paused
Update api/ltx_server_refactored.py
Browse files- api/ltx_server_refactored.py +300 -454
api/ltx_server_refactored.py
CHANGED
|
@@ -1,96 +1,101 @@
|
|
| 1 |
-
#
|
| 2 |
|
| 3 |
-
#
|
| 4 |
-
# 0. CONFIGURAÇÃO DE AMBIENTE E IMPORTAÇÕES
|
| 5 |
-
# ==============================================================================
|
| 6 |
-
import os
|
| 7 |
-
import sys
|
| 8 |
-
import gc
|
| 9 |
-
import cv2
|
| 10 |
-
import yaml
|
| 11 |
-
import time
|
| 12 |
-
import json
|
| 13 |
-
import random
|
| 14 |
-
import shutil
|
| 15 |
import warnings
|
| 16 |
-
import tempfile
|
| 17 |
-
import traceback
|
| 18 |
-
import subprocess
|
| 19 |
-
from pathlib import Path
|
| 20 |
-
from typing import List, Dict, Optional, Tuple, Union
|
| 21 |
-
|
| 22 |
-
# --- Configurações de Logging e Avisos ---
|
| 23 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 24 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
import torch
|
| 30 |
-
import
|
| 31 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
from PIL import Image
|
| 33 |
-
|
| 34 |
from huggingface_hub import hf_hub_download
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
from managers.vae_manager import vae_manager_singleton
|
| 38 |
from tools.video_encode_tool import video_encode_tool_singleton
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
# --- Constantes Globais ---
|
| 42 |
-
LTXV_DEBUG = True # Mude para False para desativar logs de debug
|
| 43 |
-
LTXV_FRAME_LOG_EVERY = 8
|
| 44 |
DEPS_DIR = Path("/data")
|
| 45 |
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 46 |
-
RESULTS_DIR = Path("/app/output")
|
| 47 |
-
DEFAULT_FPS = 24.0
|
| 48 |
-
|
| 49 |
-
# ==============================================================================
|
| 50 |
-
# 1. SETUP E FUNÇÕES AUXILIARES DE AMBIENTE
|
| 51 |
-
# ==============================================================================
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
|
|
|
| 55 |
setup_script_path = "setup.py"
|
| 56 |
if not os.path.exists(setup_script_path):
|
| 57 |
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
|
| 58 |
return
|
| 59 |
-
|
| 60 |
-
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Executando setup.py...")
|
| 61 |
try:
|
| 62 |
-
|
| 63 |
-
|
|
|
|
| 64 |
except subprocess.CalledProcessError as e:
|
| 65 |
-
print(f"[
|
| 66 |
sys.exit(1)
|
| 67 |
-
|
| 68 |
-
def add_deps_to_path(repo_path: Path):
|
| 69 |
-
"""Adiciona o diretório do repositório ao sys.path para importações locais."""
|
| 70 |
-
resolved_path = str(repo_path.resolve())
|
| 71 |
-
if resolved_path not in sys.path:
|
| 72 |
-
sys.path.insert(0, resolved_path)
|
| 73 |
-
if LTXV_DEBUG:
|
| 74 |
-
print(f"[DEBUG] Adicionado ao sys.path: {resolved_path}")
|
| 75 |
-
|
| 76 |
-
# --- Execução da configuração inicial ---
|
| 77 |
if not LTX_VIDEO_REPO_DIR.exists():
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
| 82 |
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
|
| 83 |
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
|
| 84 |
-
from
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
| 91 |
-
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 92 |
-
import ltx_video.pipelines.crf_compressor as crf_compressor
|
| 93 |
-
|
| 94 |
|
| 95 |
|
| 96 |
def load_image_to_tensor_with_resize_and_crop(
|
|
@@ -141,451 +146,292 @@ def load_image_to_tensor_with_resize_and_crop(
|
|
| 141 |
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
|
| 142 |
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
| 143 |
|
| 144 |
-
def create_latent_upsampler(latent_upsampler_model_path: str, device: str):
|
| 145 |
-
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
|
| 146 |
-
latent_upsampler.to(device)
|
| 147 |
-
latent_upsampler.eval()
|
| 148 |
-
return latent_upsampler
|
| 149 |
-
|
| 150 |
-
def create_ltx_video_pipeline(
|
| 151 |
-
ckpt_path: str,
|
| 152 |
-
precision: str,
|
| 153 |
-
text_encoder_model_name_or_path: str,
|
| 154 |
-
sampler: Optional[str] = None,
|
| 155 |
-
device: Optional[str] = None,
|
| 156 |
-
enhance_prompt: bool = False,
|
| 157 |
-
prompt_enhancer_image_caption_model_name_or_path: Optional[str] = None,
|
| 158 |
-
prompt_enhancer_llm_model_name_or_path: Optional[str] = None,
|
| 159 |
-
) -> LTXVideoPipeline:
|
| 160 |
-
ckpt_path = Path(ckpt_path)
|
| 161 |
-
assert os.path.exists(
|
| 162 |
-
ckpt_path
|
| 163 |
-
), f"Ckpt path provided (--ckpt_path) {ckpt_path} does not exist"
|
| 164 |
|
| 165 |
-
with safe_open(ckpt_path, framework="pt") as f:
|
| 166 |
-
metadata = f.metadata()
|
| 167 |
-
config_str = metadata.get("config")
|
| 168 |
-
configs = json.loads(config_str)
|
| 169 |
-
allowed_inference_steps = configs.get("allowed_inference_steps", None)
|
| 170 |
-
|
| 171 |
-
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path)
|
| 172 |
-
transformer = Transformer3DModel.from_pretrained(ckpt_path)
|
| 173 |
-
|
| 174 |
-
# Use constructor if sampler is specified, otherwise use from_pretrained
|
| 175 |
-
if sampler == "from_checkpoint" or not sampler:
|
| 176 |
-
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
|
| 177 |
-
else:
|
| 178 |
-
scheduler = RectifiedFlowScheduler(
|
| 179 |
-
sampler=("Uniform" if sampler.lower() == "uniform" else "LinearQuadratic")
|
| 180 |
-
)
|
| 181 |
-
|
| 182 |
-
text_encoder = T5EncoderModel.from_pretrained(
|
| 183 |
-
text_encoder_model_name_or_path, subfolder="text_encoder"
|
| 184 |
-
)
|
| 185 |
-
patchifier = SymmetricPatchifier(patch_size=1)
|
| 186 |
-
tokenizer = T5Tokenizer.from_pretrained(
|
| 187 |
-
text_encoder_model_name_or_path, subfolder="tokenizer"
|
| 188 |
-
)
|
| 189 |
-
|
| 190 |
-
transformer = transformer.to(device)
|
| 191 |
-
vae = vae.to(device)
|
| 192 |
-
text_encoder = text_encoder.to(device)
|
| 193 |
-
|
| 194 |
-
if enhance_prompt:
|
| 195 |
-
prompt_enhancer_image_caption_model = AutoModelForCausalLM.from_pretrained(
|
| 196 |
-
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
|
| 197 |
-
)
|
| 198 |
-
prompt_enhancer_image_caption_processor = AutoProcessor.from_pretrained(
|
| 199 |
-
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
|
| 200 |
-
)
|
| 201 |
-
prompt_enhancer_llm_model = AutoModelForCausalLM.from_pretrained(
|
| 202 |
-
prompt_enhancer_llm_model_name_or_path,
|
| 203 |
-
torch_dtype="bfloat16",
|
| 204 |
-
)
|
| 205 |
-
prompt_enhancer_llm_tokenizer = AutoTokenizer.from_pretrained(
|
| 206 |
-
prompt_enhancer_llm_model_name_or_path,
|
| 207 |
-
)
|
| 208 |
-
else:
|
| 209 |
-
prompt_enhancer_image_caption_model = None
|
| 210 |
-
prompt_enhancer_image_caption_processor = None
|
| 211 |
-
prompt_enhancer_llm_model = None
|
| 212 |
-
prompt_enhancer_llm_tokenizer = None
|
| 213 |
-
|
| 214 |
-
vae = vae.to(torch.bfloat16)
|
| 215 |
-
if precision == "bfloat16" and transformer.dtype != torch.bfloat16:
|
| 216 |
-
transformer = transformer.to(torch.bfloat16)
|
| 217 |
-
text_encoder = text_encoder.to(torch.bfloat16)
|
| 218 |
-
|
| 219 |
-
# Use submodels for the pipeline
|
| 220 |
-
submodel_dict = {
|
| 221 |
-
"transformer": transformer,
|
| 222 |
-
"patchifier": patchifier,
|
| 223 |
-
"text_encoder": text_encoder,
|
| 224 |
-
"tokenizer": tokenizer,
|
| 225 |
-
"scheduler": scheduler,
|
| 226 |
-
"vae": vae,
|
| 227 |
-
"prompt_enhancer_image_caption_model": prompt_enhancer_image_caption_model,
|
| 228 |
-
"prompt_enhancer_image_caption_processor": prompt_enhancer_image_caption_processor,
|
| 229 |
-
"prompt_enhancer_llm_model": prompt_enhancer_llm_model,
|
| 230 |
-
"prompt_enhancer_llm_tokenizer": prompt_enhancer_llm_tokenizer,
|
| 231 |
-
"allowed_inference_steps": allowed_inference_steps,
|
| 232 |
-
}
|
| 233 |
-
|
| 234 |
-
pipeline = LTXVideoPipeline(**submodel_dict)
|
| 235 |
-
pipeline = pipeline.to(device)
|
| 236 |
-
return pipeline
|
| 237 |
-
|
| 238 |
-
# ==============================================================================
|
| 239 |
-
# 2. FUNÇÕES AUXILIARES DE PROCESSAMENTO
|
| 240 |
-
# ==============================================================================
|
| 241 |
-
|
| 242 |
-
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
|
| 243 |
-
"""Calcula o preenchimento para centralizar uma imagem em uma nova dimensão."""
|
| 244 |
-
pad_h = target_h - orig_h
|
| 245 |
-
pad_w = target_w - orig_w
|
| 246 |
-
pad_top = pad_h // 2
|
| 247 |
-
pad_bottom = pad_h - pad_top
|
| 248 |
-
pad_left = pad_w // 2
|
| 249 |
-
pad_right = pad_w - pad_left
|
| 250 |
-
return (pad_left, pad_right, pad_top, pad_bottom)
|
| 251 |
-
|
| 252 |
-
def log_tensor_info(tensor: torch.Tensor, name: str = "Tensor"):
|
| 253 |
-
"""Exibe informações detalhadas sobre um tensor para depuração."""
|
| 254 |
-
if not isinstance(tensor, torch.Tensor):
|
| 255 |
-
print(f"\n[INFO] '{name}' não é um tensor.")
|
| 256 |
-
return
|
| 257 |
-
print(f"\n--- Tensor Info: {name} ---")
|
| 258 |
-
print(f" - Shape: {tuple(tensor.shape)}")
|
| 259 |
-
print(f" - Dtype: {tensor.dtype}")
|
| 260 |
-
print(f" - Device: {tensor.device}")
|
| 261 |
-
if tensor.numel() > 0:
|
| 262 |
-
try:
|
| 263 |
-
print(f" - Stats: Min={tensor.min().item():.4f}, Max={tensor.max().item():.4f}, Mean={tensor.mean().item():.4f}")
|
| 264 |
-
except RuntimeError:
|
| 265 |
-
print(" - Stats: Não foi possível calcular (ex: tensores bool).")
|
| 266 |
-
print("-" * 30)
|
| 267 |
-
|
| 268 |
-
# ==============================================================================
|
| 269 |
-
# 3. CLASSE PRINCIPAL DO SERVIÇO DE VÍDEO
|
| 270 |
-
# ==============================================================================
|
| 271 |
|
| 272 |
class VideoService:
|
| 273 |
-
"""
|
| 274 |
-
Serviço encapsulado para gerar vídeos usando a pipeline LTX-Video.
|
| 275 |
-
Gerencia o carregamento de modelos, pré-processamento, geração em múltiplos
|
| 276 |
-
passos (baixa resolução, upscale com denoise) e pós-processamento.
|
| 277 |
-
"""
|
| 278 |
def __init__(self):
|
| 279 |
-
"""Inicializa o serviço, carregando configurações e modelos."""
|
| 280 |
t0 = time.perf_counter()
|
| 281 |
-
print("[
|
| 282 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 283 |
-
self.config = self._load_config(
|
| 284 |
-
|
| 285 |
-
self.pipeline
|
| 286 |
-
self.
|
| 287 |
-
|
| 288 |
-
self.
|
| 289 |
vae_manager_singleton.attach_pipeline(
|
| 290 |
self.pipeline,
|
| 291 |
device=self.device,
|
| 292 |
autocast_dtype=self.runtime_autocast_dtype
|
| 293 |
)
|
| 294 |
self._tmp_dirs = set()
|
| 295 |
-
|
| 296 |
-
print(f"[INFO] VideoService pronto. Tempo de inicialização: {time.perf_counter()-t0:.2f}s")
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
"""Prepara os tensores de condicionamento a partir de imagens ou tensores."""
|
| 304 |
-
if not items_list:
|
| 305 |
-
return []
|
| 306 |
-
|
| 307 |
-
height, width = self._calculate_downscaled_dims(height, width)
|
| 308 |
-
|
| 309 |
-
height_padded = ((height - 1) // 8 + 1) * 8
|
| 310 |
-
width_padded = ((width - 1) // 8 + 1) * 8
|
| 311 |
-
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 312 |
-
|
| 313 |
-
conditioning_items = []
|
| 314 |
-
for media, frame_idx, weight in items_list:
|
| 315 |
-
if isinstance(media, str):
|
| 316 |
-
tensor = self._prepare_conditioning_tensor_from_path(media, height, width, padding_values)
|
| 317 |
-
else: # Assume que é um tensor
|
| 318 |
-
tensor = media.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 319 |
-
|
| 320 |
-
# Garante que o frame de condicionamento esteja dentro dos limites do vídeo
|
| 321 |
-
safe_frame_idx = max(0, min(int(frame_idx), num_frames - 1))
|
| 322 |
-
conditioning_items.append(ConditioningItem(tensor, safe_frame_idx, float(weight)))
|
| 323 |
-
|
| 324 |
-
return conditioning_items
|
| 325 |
-
|
| 326 |
-
def generate_low_resolution(
|
| 327 |
-
self, prompt: str, negative_prompt: str,
|
| 328 |
-
height: int, width: int, duration_secs: float,
|
| 329 |
-
guidance_scale: float, seed: Optional[int] = None,
|
| 330 |
-
conditioning_items: Optional[List[ConditioningItem]] = None
|
| 331 |
-
) -> Tuple[str, str, int]:
|
| 332 |
-
"""
|
| 333 |
-
Gera um vídeo de baixa resolução e retorna os caminhos para o vídeo e os latentes.
|
| 334 |
-
"""
|
| 335 |
-
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 336 |
-
self._seed_everething(used_seed)
|
| 337 |
-
|
| 338 |
-
actual_num_frames = int(duration_secs * DEFAULT_FPS)
|
| 339 |
-
|
| 340 |
-
downscaled_height, downscaled_width = self._calculate_downscaled_dims(height, width)
|
| 341 |
-
|
| 342 |
-
first_pass_kwargs = {
|
| 343 |
-
"prompt": prompt,
|
| 344 |
-
"negative_prompt": negative_prompt,
|
| 345 |
-
"height": downscaled_height,
|
| 346 |
-
"width": downscaled_width,
|
| 347 |
-
"num_frames": max(3, (actual_num_frames//8)*8)+1,
|
| 348 |
-
"frame_rate": int(DEFAULT_FPS),
|
| 349 |
-
"generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 350 |
-
"output_type": "latent",
|
| 351 |
-
"is_video": True,
|
| 352 |
-
"vae_per_channel_normalize": True,
|
| 353 |
-
"conditioning_items": conditioning_items,
|
| 354 |
-
"guidance_scale": float(guidance_scale),
|
| 355 |
-
**(self.config.get("first_pass", {}))
|
| 356 |
-
}
|
| 357 |
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
|
|
|
| 361 |
try:
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
return video_path, latents_path, used_seed
|
| 370 |
-
|
| 371 |
except Exception as e:
|
| 372 |
-
print(f"[
|
| 373 |
-
traceback.print_exc()
|
| 374 |
-
raise
|
| 375 |
-
finally:
|
| 376 |
-
self._finalize()
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
def encode_latents_to_mp4(self, latents_path: str, fps: int = int(DEFAULT_FPS)) -> str:
|
| 380 |
-
"""Decodifica um tensor de latentes salvo e o salva como um vídeo MP4."""
|
| 381 |
-
latents = torch.load(latents_path)
|
| 382 |
-
temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_")
|
| 383 |
-
self._register_tmp_dir(temp_dir)
|
| 384 |
-
seed = random.randint(0, 99999) # Seed apenas para nome do arquivo
|
| 385 |
-
|
| 386 |
try:
|
| 387 |
-
|
| 388 |
-
pixel_chunks = []
|
| 389 |
-
|
| 390 |
-
with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')):
|
| 391 |
-
for chunk in chunks:
|
| 392 |
-
if chunk.shape[2] == 0: continue
|
| 393 |
-
pixel_chunk = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 394 |
-
pixel_chunks.append(pixel_chunk)
|
| 395 |
-
|
| 396 |
-
final_pixel_tensor = self._merge_chunks_with_overlap(pixel_chunks)
|
| 397 |
-
final_video_path = self._save_video_from_tensor(final_pixel_tensor, f"final_video_{seed}", seed, temp_dir, fps=fps)
|
| 398 |
-
return final_video_path
|
| 399 |
-
|
| 400 |
except Exception as e:
|
| 401 |
-
print(f"[
|
| 402 |
-
traceback.print_exc()
|
| 403 |
-
raise
|
| 404 |
-
finally:
|
| 405 |
-
self._finalize()
|
| 406 |
|
| 407 |
-
|
| 408 |
-
# --- Métodos Internos e Auxiliares ---
|
| 409 |
-
# --------------------------------------------------------------------------
|
| 410 |
-
|
| 411 |
-
def _finalize(self):
|
| 412 |
-
"""Limpa a memória da GPU e os diretórios temporários."""
|
| 413 |
-
if LTXV_DEBUG:
|
| 414 |
-
print("[DEBUG] Finalize: iniciando limpeza...")
|
| 415 |
-
|
| 416 |
-
gc.collect()
|
| 417 |
-
if torch.cuda.is_available():
|
| 418 |
-
torch.cuda.empty_cache()
|
| 419 |
-
torch.cuda.ipc_collect()
|
| 420 |
-
|
| 421 |
-
# Limpa todos os diretórios temporários registrados
|
| 422 |
-
for d in list(self._tmp_dirs):
|
| 423 |
-
shutil.rmtree(d, ignore_errors=True)
|
| 424 |
-
self._tmp_dirs.remove(d)
|
| 425 |
-
if LTXV_DEBUG:
|
| 426 |
-
print(f"[DEBUG] Diretório temporário removido: {d}")
|
| 427 |
-
|
| 428 |
-
def _load_config(self, config_filename: str) -> Dict:
|
| 429 |
-
"""Carrega o arquivo de configuração YAML."""
|
| 430 |
-
config_path = LTX_VIDEO_REPO_DIR / "configs" / config_filename
|
| 431 |
-
print(f"[INFO] Carregando configuração de: {config_path}")
|
| 432 |
-
with open(config_path, "r") as file:
|
| 433 |
-
return yaml.safe_load(file)
|
| 434 |
-
|
| 435 |
-
def _load_models_from_hub(self):
|
| 436 |
-
"""Baixa e cria as instâncias da pipeline e do upsampler."""
|
| 437 |
t0 = time.perf_counter()
|
| 438 |
LTX_REPO = "Lightricks/LTX-Video"
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 443 |
token=os.getenv("HF_TOKEN")
|
| 444 |
)
|
| 445 |
-
|
|
|
|
| 446 |
|
| 447 |
-
print("[
|
| 448 |
pipeline = create_ltx_video_pipeline(
|
| 449 |
ckpt_path=self.config["checkpoint_path"],
|
| 450 |
precision=self.config["precision"],
|
| 451 |
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 452 |
sampler=self.config["sampler"],
|
| 453 |
-
device="cpu",
|
| 454 |
-
enhance_prompt=False
|
|
|
|
|
|
|
| 455 |
)
|
| 456 |
-
print("[
|
| 457 |
|
| 458 |
latent_upsampler = None
|
| 459 |
if self.config.get("spatial_upscaler_model_path"):
|
| 460 |
-
print("[
|
| 461 |
-
self.config["spatial_upscaler_model_path"] = hf_hub_download(
|
| 462 |
-
repo_id=LTX_REPO, filename=self.config["spatial_upscaler_model_path"],
|
| 463 |
-
token=os.getenv("HF_TOKEN")
|
| 464 |
-
)
|
| 465 |
-
print(f"[INFO] Upscaler em: {self.config['spatial_upscaler_model_path']}")
|
| 466 |
-
|
| 467 |
-
print("[INFO] Construindo latent_upsampler...")
|
| 468 |
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
| 469 |
-
print("[
|
| 470 |
-
|
| 471 |
-
print(f"[INFO] Carregamento de modelos concluído em {time.perf_counter()-t0:.2f}s")
|
| 472 |
return pipeline, latent_upsampler
|
| 473 |
-
|
| 474 |
-
def _move_models_to_device(self):
|
| 475 |
-
"""Move os modelos carregados para o dispositivo de computação (GPU/CPU)."""
|
| 476 |
-
print(f"[INFO] Movendo modelos para o dispositivo: {self.device}")
|
| 477 |
-
self.pipeline.to(self.device)
|
| 478 |
-
if self.latent_upsampler:
|
| 479 |
-
self.latent_upsampler.to(self.device)
|
| 480 |
|
| 481 |
-
def
|
| 482 |
-
"""Determina o dtype para autocast com base na configuração de precisão."""
|
| 483 |
prec = str(self.config.get("precision", "")).lower()
|
|
|
|
| 484 |
if prec in ["float8_e4m3fn", "bfloat16"]:
|
| 485 |
-
|
| 486 |
elif prec == "mixed_precision":
|
| 487 |
-
|
| 488 |
-
|
|
|
|
|
|
|
|
|
|
| 489 |
|
| 490 |
@torch.no_grad()
|
| 491 |
-
def
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
|
| 500 |
-
# Filtro AdaIN para manter consistência de cor/estilo com o vídeo de baixa resolução
|
| 501 |
-
return adain_filter_latent(latents=upsampled_latents_normalized, reference_latents=latents)
|
| 502 |
-
|
| 503 |
def _prepare_conditioning_tensor_from_path(self, filepath: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
|
| 504 |
"""Carrega uma imagem, redimensiona, aplica padding e move para o dispositivo."""
|
| 505 |
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 506 |
tensor = F.pad(tensor, padding)
|
| 507 |
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
|
|
|
| 508 |
|
| 509 |
-
def
|
| 510 |
-
|
|
|
|
|
|
|
|
|
|
| 511 |
height_padded = ((height - 1) // 8 + 1) * 8
|
| 512 |
width_padded = ((width - 1) // 8 + 1) * 8
|
| 513 |
-
|
|
|
|
| 514 |
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 515 |
vae_scale_factor = self.pipeline.vae_scale_factor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
return downscaled_height, downscaled_width
|
| 524 |
-
|
| 525 |
-
def _split_latents_with_overlap(self, latents: torch.Tensor, overlap: int = 1) -> List[torch.Tensor]:
|
| 526 |
-
"""Divide um tensor de latentes em dois chunks com sobreposição."""
|
| 527 |
-
total_frames = latents.shape[2]
|
| 528 |
-
if total_frames <= overlap:
|
| 529 |
-
return [latents]
|
| 530 |
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 537 |
|
| 538 |
-
def _merge_chunks_with_overlap(self, chunks: List[torch.Tensor], overlap: int = 1) -> torch.Tensor:
|
| 539 |
-
"""Junta uma lista de chunks, removendo a sobreposição."""
|
| 540 |
-
if not chunks:
|
| 541 |
-
return torch.empty(0)
|
| 542 |
-
if len(chunks) == 1:
|
| 543 |
-
return chunks[0]
|
| 544 |
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
|
|
|
|
|
|
| 549 |
|
| 550 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 551 |
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
temp_path = os.path.join(temp_dir, f"{base_filename}_{seed}.mp4")
|
| 564 |
-
video_encode_tool_singleton.save_video_from_tensor(pixel_tensor, temp_path, fps=fps)
|
| 565 |
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
return str(final_path)
|
| 570 |
|
| 571 |
-
def _register_tmp_dir(self, dir_path: str):
|
| 572 |
-
"""Registra um diretório temporário para limpeza posterior."""
|
| 573 |
-
if dir_path and os.path.isdir(dir_path):
|
| 574 |
-
self._tmp_dirs.add(dir_path)
|
| 575 |
-
if LTXV_DEBUG:
|
| 576 |
-
print(f"[DEBUG] Diretório temporário registrado: {dir_path}")
|
| 577 |
-
|
| 578 |
-
def _seed_everething(self, seed: int):
|
| 579 |
-
random.seed(seed)
|
| 580 |
-
np.random.seed(seed)
|
| 581 |
-
torch.manual_seed(seed)
|
| 582 |
-
if torch.cuda.is_available():
|
| 583 |
-
torch.cuda.manual_seed(seed)
|
| 584 |
-
if torch.backends.mps.is_available():
|
| 585 |
-
torch.mps.manual_seed(seed)
|
| 586 |
|
| 587 |
-
#
|
| 588 |
-
# 4. INSTANCIAÇÃO E PONTO DE ENTRADA (Exemplo)
|
| 589 |
-
# ==============================================================================
|
| 590 |
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 591 |
-
video_generation_service = VideoService()
|
|
|
|
|
|
| 1 |
+
# ltx_server_refactored.py — VideoService (Modular Version with Simple Overlap Chunking)
|
| 2 |
|
| 3 |
+
# --- 0. WARNINGS E AMBIENTE ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 6 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 7 |
+
warnings.filterwarnings("ignore", message=".*")
|
| 8 |
+
from huggingface_hub import logging
|
| 9 |
+
logging.set_verbosity_error()
|
| 10 |
+
logging.set_verbosity_warning()
|
| 11 |
+
logging.set_verbosity_info()
|
| 12 |
+
logging.set_verbosity_debug()
|
| 13 |
+
LTXV_DEBUG=1
|
| 14 |
+
LTXV_FRAME_LOG_EVERY=8
|
| 15 |
+
import os, subprocess, shlex, tempfile
|
| 16 |
import torch
|
| 17 |
+
import json
|
| 18 |
import numpy as np
|
| 19 |
+
import random
|
| 20 |
+
import os
|
| 21 |
+
import shlex
|
| 22 |
+
import yaml
|
| 23 |
+
from typing import List, Dict
|
| 24 |
+
from pathlib import Path
|
| 25 |
+
import imageio
|
| 26 |
from PIL import Image
|
| 27 |
+
import tempfile
|
| 28 |
from huggingface_hub import hf_hub_download
|
| 29 |
+
import sys
|
| 30 |
+
import subprocess
|
| 31 |
+
import gc
|
| 32 |
+
import shutil
|
| 33 |
+
import contextlib
|
| 34 |
+
import time
|
| 35 |
+
import traceback
|
| 36 |
+
from einops import rearrange
|
| 37 |
+
import torch.nn.functional as F
|
| 38 |
from managers.vae_manager import vae_manager_singleton
|
| 39 |
from tools.video_encode_tool import video_encode_tool_singleton
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
DEPS_DIR = Path("/data")
|
| 41 |
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# (Todas as funções de setup, helpers e inicialização da classe permanecem inalteradas)
|
| 44 |
+
# ... (run_setup, add_deps_to_path, _query_gpu_processes_via_nvml, etc.)
|
| 45 |
+
def run_setup():
|
| 46 |
setup_script_path = "setup.py"
|
| 47 |
if not os.path.exists(setup_script_path):
|
| 48 |
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
|
| 49 |
return
|
|
|
|
|
|
|
| 50 |
try:
|
| 51 |
+
print("[DEBUG] Executando setup.py para dependências...")
|
| 52 |
+
subprocess.run([sys.executable, setup_script_path], check=True)
|
| 53 |
+
print("[DEBUG] Setup concluído com sucesso.")
|
| 54 |
except subprocess.CalledProcessError as e:
|
| 55 |
+
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
|
| 56 |
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
if not LTX_VIDEO_REPO_DIR.exists():
|
| 58 |
+
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
|
| 59 |
+
run_setup()
|
| 60 |
+
def add_deps_to_path():
|
| 61 |
+
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 62 |
+
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 63 |
+
sys.path.insert(0, repo_path)
|
| 64 |
+
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
|
| 65 |
+
def calculate_padding(orig_h, orig_w, target_h, target_w):
|
| 66 |
+
pad_h = target_h - orig_h
|
| 67 |
+
pad_w = target_w - orig_w
|
| 68 |
+
pad_top = pad_h // 2
|
| 69 |
+
pad_bottom = pad_h - pad_top
|
| 70 |
+
pad_left = pad_w // 2
|
| 71 |
+
pad_right = pad_w - pad_left
|
| 72 |
+
return (pad_left, pad_right, pad_top, pad_bottom)
|
| 73 |
+
def log_tensor_info(tensor, name="Tensor"):
|
| 74 |
+
if not isinstance(tensor, torch.Tensor):
|
| 75 |
+
print(f"\n[INFO] '{name}' não é tensor.")
|
| 76 |
+
return
|
| 77 |
+
print(f"\n--- Tensor: {name} ---")
|
| 78 |
+
print(f" - Shape: {tuple(tensor.shape)}")
|
| 79 |
+
print(f" - Dtype: {tensor.dtype}")
|
| 80 |
+
print(f" - Device: {tensor.device}")
|
| 81 |
+
if tensor.numel() > 0:
|
| 82 |
+
try:
|
| 83 |
+
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}")
|
| 84 |
+
except Exception:
|
| 85 |
+
pass
|
| 86 |
+
print("------------------------------------------\n")
|
| 87 |
|
| 88 |
+
add_deps_to_path()
|
| 89 |
+
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
|
| 90 |
+
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 91 |
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
|
| 92 |
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
|
| 93 |
+
from api.ltx.inference import (
|
| 94 |
+
create_ltx_video_pipeline,
|
| 95 |
+
create_latent_upsampler,
|
| 96 |
+
load_image_to_tensor_with_resize_and_crop,
|
| 97 |
+
seed_everething,
|
| 98 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
|
| 101 |
def load_image_to_tensor_with_resize_and_crop(
|
|
|
|
| 146 |
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
|
| 147 |
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
class VideoService:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
def __init__(self):
|
|
|
|
| 153 |
t0 = time.perf_counter()
|
| 154 |
+
print("[DEBUG] Inicializando VideoService...")
|
| 155 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 156 |
+
self.config = self._load_config()
|
| 157 |
+
self.pipeline, self.latent_upsampler = self._load_models()
|
| 158 |
+
self.pipeline.to(self.device)
|
| 159 |
+
if self.latent_upsampler:
|
| 160 |
+
self.latent_upsampler.to(self.device)
|
| 161 |
+
self._apply_precision_policy()
|
| 162 |
vae_manager_singleton.attach_pipeline(
|
| 163 |
self.pipeline,
|
| 164 |
device=self.device,
|
| 165 |
autocast_dtype=self.runtime_autocast_dtype
|
| 166 |
)
|
| 167 |
self._tmp_dirs = set()
|
| 168 |
+
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
|
|
|
|
| 169 |
|
| 170 |
+
def _load_config(self):
|
| 171 |
+
base = LTX_VIDEO_REPO_DIR / "configs"
|
| 172 |
+
config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 173 |
+
with open(config_path, "r") as file:
|
| 174 |
+
return yaml.safe_load(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
+
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
|
| 177 |
+
print("[DEBUG] Finalize: iniciando limpeza...")
|
| 178 |
+
keep = set(keep_paths or []); extras = set(extra_paths or [])
|
| 179 |
+
gc.collect()
|
| 180 |
try:
|
| 181 |
+
if clear_gpu and torch.cuda.is_available():
|
| 182 |
+
torch.cuda.empty_cache()
|
| 183 |
+
try:
|
| 184 |
+
torch.cuda.ipc_collect()
|
| 185 |
+
except Exception:
|
| 186 |
+
pass
|
|
|
|
|
|
|
|
|
|
| 187 |
except Exception as e:
|
| 188 |
+
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
try:
|
| 190 |
+
self._log_gpu_memory("Após finalize")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
except Exception as e:
|
| 192 |
+
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
+
def _load_models(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
t0 = time.perf_counter()
|
| 196 |
LTX_REPO = "Lightricks/LTX-Video"
|
| 197 |
+
print("[DEBUG] Baixando checkpoint principal...")
|
| 198 |
+
distilled_model_path = hf_hub_download(
|
| 199 |
+
repo_id=LTX_REPO,
|
| 200 |
+
filename=self.config["checkpoint_path"],
|
| 201 |
+
local_dir=os.getenv("HF_HOME"),
|
| 202 |
+
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 203 |
+
token=os.getenv("HF_TOKEN"),
|
| 204 |
+
)
|
| 205 |
+
self.config["checkpoint_path"] = distilled_model_path
|
| 206 |
+
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
|
| 207 |
+
|
| 208 |
+
print("[DEBUG] Baixando upscaler espacial...")
|
| 209 |
+
spatial_upscaler_path = hf_hub_download(
|
| 210 |
+
repo_id=LTX_REPO,
|
| 211 |
+
filename=self.config["spatial_upscaler_model_path"],
|
| 212 |
+
local_dir=os.getenv("HF_HOME"),
|
| 213 |
+
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 214 |
token=os.getenv("HF_TOKEN")
|
| 215 |
)
|
| 216 |
+
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
|
| 217 |
+
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
|
| 218 |
|
| 219 |
+
print("[DEBUG] Construindo pipeline...")
|
| 220 |
pipeline = create_ltx_video_pipeline(
|
| 221 |
ckpt_path=self.config["checkpoint_path"],
|
| 222 |
precision=self.config["precision"],
|
| 223 |
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 224 |
sampler=self.config["sampler"],
|
| 225 |
+
device="cpu",
|
| 226 |
+
enhance_prompt=False,
|
| 227 |
+
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
|
| 228 |
+
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
|
| 229 |
)
|
| 230 |
+
print("[DEBUG] Pipeline pronto.")
|
| 231 |
|
| 232 |
latent_upsampler = None
|
| 233 |
if self.config.get("spatial_upscaler_model_path"):
|
| 234 |
+
print("[DEBUG] Construindo latent_upsampler...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
| 236 |
+
print("[DEBUG] Upsampler pronto.")
|
| 237 |
+
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
|
|
|
|
| 238 |
return pipeline, latent_upsampler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
+
def _apply_precision_policy(self):
|
|
|
|
| 241 |
prec = str(self.config.get("precision", "")).lower()
|
| 242 |
+
self.runtime_autocast_dtype = torch.float32
|
| 243 |
if prec in ["float8_e4m3fn", "bfloat16"]:
|
| 244 |
+
self.runtime_autocast_dtype = torch.bfloat16
|
| 245 |
elif prec == "mixed_precision":
|
| 246 |
+
self.runtime_autocast_dtype = torch.float16
|
| 247 |
+
|
| 248 |
+
def _register_tmp_dir(self, d: str):
|
| 249 |
+
if d and os.path.isdir(d):
|
| 250 |
+
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
|
| 251 |
|
| 252 |
@torch.no_grad()
|
| 253 |
+
def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
|
| 254 |
+
try:
|
| 255 |
+
if not self.latent_upsampler:
|
| 256 |
+
raise ValueError("Latent Upsampler não está carregado.")
|
| 257 |
+
latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
|
| 258 |
+
upsampled_latents = self.latent_upsampler(latents_unnormalized)
|
| 259 |
+
return normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
|
| 260 |
+
except Exception as e:
|
| 261 |
+
pass
|
| 262 |
+
finally:
|
| 263 |
+
torch.cuda.empty_cache()
|
| 264 |
+
torch.cuda.ipc_collect()
|
| 265 |
+
self.finalize(keep_paths=[])
|
| 266 |
+
|
| 267 |
+
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
|
| 268 |
+
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 269 |
+
tensor = torch.nn.functional.pad(tensor, padding_values)
|
| 270 |
+
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None):
|
| 274 |
+
output_path = os.path.join(temp_dir, f"{base_filename}_{used_seed}.mp4")
|
| 275 |
+
video_encode_tool_singleton.save_video_from_tensor(
|
| 276 |
+
pixel_tensor, output_path, fps=fps, progress_callback=progress_callback
|
| 277 |
+
)
|
| 278 |
+
final_path = os.path.join(results_dir, f"{base_filename}_{used_seed}.mp4")
|
| 279 |
+
shutil.move(output_path, final_path)
|
| 280 |
+
print(f"[DEBUG] Vídeo salvo em: {final_path}")
|
| 281 |
+
return final_path
|
| 282 |
+
|
| 283 |
+
# ==============================================================================
|
| 284 |
+
# --- FUNÇÕES MODULARES COM A LÓGICA DE CHUNKING SIMPLIFICADA ---
|
| 285 |
+
# ==============================================================================
|
| 286 |
+
|
| 287 |
+
def _prepare_condition_items(self, items_list: List[Tuple], height: int, width: int, num_frames: int) -> List[ConditioningItem]:
|
| 288 |
+
"""Prepara os tensores de condicionamento a partir de imagens ou tensores."""
|
| 289 |
+
if not items_list:
|
| 290 |
+
return []
|
| 291 |
+
|
| 292 |
+
height, width = self._calculate_downscaled_dims(height, width)
|
| 293 |
+
|
| 294 |
+
height_padded = ((height - 1) // 8 + 1) * 8
|
| 295 |
+
width_padded = ((width - 1) // 8 + 1) * 8
|
| 296 |
+
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 297 |
|
| 298 |
+
conditioning_items = []
|
| 299 |
+
for media, frame_idx, weight in items_list:
|
| 300 |
+
if isinstance(media, str):
|
| 301 |
+
tensor = self._prepare_conditioning_tensor_from_path(media, height, width, padding_values)
|
| 302 |
+
else: # Assume que é um tensor
|
| 303 |
+
tensor = media.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 304 |
+
|
| 305 |
+
# Garante que o frame de condicionamento esteja dentro dos limites do vídeo
|
| 306 |
+
safe_frame_idx = max(0, min(int(frame_idx), num_frames - 1))
|
| 307 |
+
conditioning_items.append(ConditioningItem(tensor, safe_frame_idx, float(weight)))
|
| 308 |
+
|
| 309 |
+
return conditioning_items
|
| 310 |
|
|
|
|
|
|
|
|
|
|
| 311 |
def _prepare_conditioning_tensor_from_path(self, filepath: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
|
| 312 |
"""Carrega uma imagem, redimensiona, aplica padding e move para o dispositivo."""
|
| 313 |
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 314 |
tensor = F.pad(tensor, padding)
|
| 315 |
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 316 |
+
|
| 317 |
|
| 318 |
+
def generate_low(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None):
|
| 319 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 320 |
+
seed_everething(used_seed)
|
| 321 |
+
FPS = 24.0
|
| 322 |
+
actual_num_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1))
|
| 323 |
height_padded = ((height - 1) // 8 + 1) * 8
|
| 324 |
width_padded = ((width - 1) // 8 + 1) * 8
|
| 325 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_"); self._register_tmp_dir(temp_dir)
|
| 326 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 327 |
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 328 |
vae_scale_factor = self.pipeline.vae_scale_factor
|
| 329 |
+
x_width = int(width_padded * downscale_factor)
|
| 330 |
+
downscaled_width = x_width - (x_width % vae_scale_factor)
|
| 331 |
+
x_height = int(height_padded * downscale_factor)
|
| 332 |
+
downscaled_height = x_height - (x_height % vae_scale_factor)
|
| 333 |
+
first_pass_kwargs = {
|
| 334 |
+
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
|
| 335 |
+
"num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 336 |
+
"output_type": "latent", "conditioning_items": conditioning_items, "guidance_scale": float(guidance_scale),
|
| 337 |
+
**(self.config.get("first_pass", {}))
|
| 338 |
+
}
|
| 339 |
+
try:
|
| 340 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
|
| 341 |
+
latents = self.pipeline(**first_pass_kwargs).images
|
| 342 |
+
pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 343 |
+
video_path = self._save_and_log_video(pixel_tensor, "low_res_video", FPS, temp_dir, results_dir, used_seed)
|
| 344 |
+
latents_cpu = latents.detach().to("cpu")
|
| 345 |
+
tensor_path = os.path.join(results_dir, f"latents_low_res_{used_seed}.pt")
|
| 346 |
+
torch.save(latents_cpu, tensor_path)
|
| 347 |
+
return video_path, tensor_path, used_seed
|
| 348 |
|
| 349 |
+
except Exception as e:
|
| 350 |
+
pass
|
| 351 |
+
finally:
|
| 352 |
+
torch.cuda.empty_cache()
|
| 353 |
+
torch.cuda.ipc_collect()
|
| 354 |
+
self.finalize(keep_paths=[])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
+
def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed):
|
| 357 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 358 |
+
seed_everething(used_seed)
|
| 359 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_up_"); self._register_tmp_dir(temp_dir)
|
| 360 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 361 |
+
latents_low = torch.load(latents_path).to(self.device)
|
| 362 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
|
| 363 |
+
upsampled_latents = self._upsample_latents_internal(latents_low)
|
| 364 |
+
upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=latents_low)
|
| 365 |
+
del latents_low; torch.cuda.empty_cache()
|
| 366 |
+
|
| 367 |
+
# --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP ---
|
| 368 |
+
total_frames = upsampled_latents.shape[2]
|
| 369 |
+
# Garante que mid_point seja pelo menos 1 para evitar um segundo chunk vazio se houver poucos frames
|
| 370 |
+
mid_point = max(1, total_frames // 2)
|
| 371 |
+
chunk1 = upsampled_latents[:, :, :mid_point, :, :]
|
| 372 |
+
# O segundo chunk começa um frame antes para criar o overlap
|
| 373 |
+
chunk2 = upsampled_latents[:, :, mid_point - 1:, :, :]
|
| 374 |
+
|
| 375 |
+
final_latents_list = []
|
| 376 |
+
for i, chunk in enumerate([chunk1, chunk2]):
|
| 377 |
+
if chunk.shape[2] <= 1: continue # Pula chunks inválidos ou vazios
|
| 378 |
+
second_pass_height = chunk.shape[3] * self.pipeline.vae_scale_factor
|
| 379 |
+
second_pass_width = chunk.shape[4] * self.pipeline.vae_scale_factor
|
| 380 |
+
second_pass_kwargs = {
|
| 381 |
+
"prompt": prompt, "negative_prompt": negative_prompt, "height": second_pass_height, "width": second_pass_width,
|
| 382 |
+
"num_frames": chunk.shape[2], "latents": chunk, "guidance_scale": float(guidance_scale),
|
| 383 |
+
"output_type": "latent", "generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 384 |
+
**(self.config.get("second_pass", {}))
|
| 385 |
+
}
|
| 386 |
+
refined_chunk = self.pipeline(**second_pass_kwargs).images
|
| 387 |
+
# Remove o overlap do primeiro chunk refinado antes de juntar
|
| 388 |
+
if i == 0:
|
| 389 |
+
final_latents_list.append(refined_chunk[:, :, :-1, :, :])
|
| 390 |
+
else:
|
| 391 |
+
final_latents_list.append(refined_chunk)
|
| 392 |
+
|
| 393 |
+
final_latents = torch.cat(final_latents_list, dim=2)
|
| 394 |
+
log_tensor_info(final_latents, "Latentes Upscaled/Refinados Finais")
|
| 395 |
+
|
| 396 |
+
latents_cpu = final_latents.detach().to("cpu")
|
| 397 |
+
tensor_path = os.path.join(results_dir, f"latents_refined_{used_seed}.pt")
|
| 398 |
+
torch.save(latents_cpu, tensor_path)
|
| 399 |
+
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 400 |
+
video_path = self._save_and_log_video(pixel_tensor, "refined_video", 24.0, temp_dir, results_dir, used_seed)
|
| 401 |
+
return video_path, tensor_path
|
| 402 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
|
| 404 |
+
|
| 405 |
+
def encode_mp4(self, latents_path: str, fps: int = 24):
|
| 406 |
+
latents = torch.load(latents_path)
|
| 407 |
+
seed = random.randint(0, 99999)
|
| 408 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_"); self._register_tmp_dir(temp_dir)
|
| 409 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 410 |
|
| 411 |
+
# --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP ---
|
| 412 |
+
total_frames = latents.shape[2]
|
| 413 |
+
mid_point = max(1, total_frames // 2)
|
| 414 |
+
chunk1_latents = latents[:, :, :mid_point, :, :]
|
| 415 |
+
chunk2_latents = latents[:, :, mid_point - 1:, :, :]
|
| 416 |
|
| 417 |
+
video_parts = []
|
| 418 |
+
pixel_chunks_to_concat = []
|
| 419 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
|
| 420 |
+
for i, chunk in enumerate([chunk1_latents, chunk2_latents]):
|
| 421 |
+
if chunk.shape[2] == 0: continue
|
| 422 |
+
pixel_chunk = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 423 |
+
# Remove o overlap do primeiro chunk de pixels
|
| 424 |
+
if i == 0:
|
| 425 |
+
pixel_chunks_to_concat.append(pixel_chunk[:, :, :-1, :, :])
|
| 426 |
+
else:
|
| 427 |
+
pixel_chunks_to_concat.append(pixel_chunk)
|
|
|
|
|
|
|
| 428 |
|
| 429 |
+
final_pixel_tensor = torch.cat(pixel_chunks_to_concat, dim=2)
|
| 430 |
+
final_video_path = self._save_and_log_video(final_pixel_tensor, f"final_concatenated_{seed}", fps, temp_dir, results_dir, seed)
|
| 431 |
+
return final_video_path
|
|
|
|
| 432 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
|
| 434 |
+
# --- INSTANCIAÇÃO DO SERVIÇO ---
|
|
|
|
|
|
|
| 435 |
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 436 |
+
video_generation_service = VideoService()
|
| 437 |
+
print("Instância do VideoService pronta para uso.")
|