euiiiia commited on
Commit
2a4f154
·
verified ·
1 Parent(s): 62b2ea7

Update api/ltx_server_refactored.py

Browse files
Files changed (1) hide show
  1. api/ltx_server_refactored.py +51 -50
api/ltx_server_refactored.py CHANGED
@@ -93,55 +93,6 @@ from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
93
  import ltx_video.pipelines.crf_compressor as crf_compressor
94
 
95
 
96
-
97
- def load_image_to_tensor_with_resize_and_crop(
98
- image_input: Union[str, Image.Image],
99
- target_height: int = 512,
100
- target_width: int = 768,
101
- just_crop: bool = False,
102
- ) -> torch.Tensor:
103
- """Load and process an image into a tensor.
104
-
105
- Args:
106
- image_input: Either a file path (str) or a PIL Image object
107
- target_height: Desired height of output tensor
108
- target_width: Desired width of output tensor
109
- just_crop: If True, only crop the image to the target size without resizing
110
- """
111
- if isinstance(image_input, str):
112
- image = Image.open(image_input).convert("RGB")
113
- elif isinstance(image_input, Image.Image):
114
- image = image_input
115
- else:
116
- raise ValueError("image_input must be either a file path or a PIL Image object")
117
-
118
- input_width, input_height = image.size
119
- aspect_ratio_target = target_width / target_height
120
- aspect_ratio_frame = input_width / input_height
121
- if aspect_ratio_frame > aspect_ratio_target:
122
- new_width = int(input_height * aspect_ratio_target)
123
- new_height = input_height
124
- x_start = (input_width - new_width) // 2
125
- y_start = 0
126
- else:
127
- new_width = input_width
128
- new_height = int(input_width / aspect_ratio_target)
129
- x_start = 0
130
- y_start = (input_height - new_height) // 2
131
-
132
- image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
133
- if not just_crop:
134
- image = image.resize((target_width, target_height))
135
-
136
- image = np.array(image)
137
- image = cv2.GaussianBlur(image, (3, 3), 0)
138
- frame_tensor = torch.from_numpy(image).float()
139
- frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0
140
- frame_tensor = frame_tensor.permute(2, 0, 1)
141
- frame_tensor = (frame_tensor / 127.5) - 1.0
142
- # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
143
- return frame_tensor.unsqueeze(0).unsqueeze(2)
144
-
145
  def create_latent_upsampler(latent_upsampler_model_path: str, device: str):
146
  latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
147
  latent_upsampler.to(device)
@@ -303,6 +254,56 @@ class VideoService:
303
  # --- Métodos Públicos (API do Serviço) ---
304
  # --------------------------------------------------------------------------
305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306
 
307
  def generate_low_resolution1(self, prompt: str, negative_prompt: str, height: int, width: int, duration_secs: float, guidance_scale: float, seed: Optional[int] = None, conditioning_items: Optional[List[PatchedConditioningItem]] = None) -> Tuple[str, str, int]:
308
  """
@@ -698,7 +699,7 @@ class VideoService:
698
 
699
  def _prepare_conditioning_tensor_from_path(self, filepath: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
700
  """Carrega uma imagem, redimensiona, aplica padding e move para o dispositivo."""
701
- tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
702
  tensor = F.pad(tensor, padding)
703
  return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
704
 
 
93
  import ltx_video.pipelines.crf_compressor as crf_compressor
94
 
95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
  def create_latent_upsampler(latent_upsampler_model_path: str, device: str):
97
  latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
98
  latent_upsampler.to(device)
 
254
  # --- Métodos Públicos (API do Serviço) ---
255
  # --------------------------------------------------------------------------
256
 
257
+ def _load_image_to_tensor_with_resize_and_crop(
258
+ self,
259
+ image_input: Union[str, Image.Image],
260
+ target_height: int = 512,
261
+ target_width: int = 768,
262
+ just_crop: bool = False,
263
+ ) -> torch.Tensor:
264
+ """Load and process an image into a tensor.
265
+
266
+ Args:
267
+ image_input: Either a file path (str) or a PIL Image object
268
+ target_height: Desired height of output tensor
269
+ target_width: Desired width of output tensor
270
+ just_crop: If True, only crop the image to the target size without resizing
271
+ """
272
+ if isinstance(image_input, str):
273
+ image = Image.open(image_input).convert("RGB")
274
+ elif isinstance(image_input, Image.Image):
275
+ image = image_input
276
+ else:
277
+ raise ValueError("image_input must be either a file path or a PIL Image object")
278
+
279
+ input_width, input_height = image.size
280
+ aspect_ratio_target = target_width / target_height
281
+ aspect_ratio_frame = input_width / input_height
282
+ if aspect_ratio_frame > aspect_ratio_target:
283
+ new_width = int(input_height * aspect_ratio_target)
284
+ new_height = input_height
285
+ x_start = (input_width - new_width) // 2
286
+ y_start = 0
287
+ else:
288
+ new_width = input_width
289
+ new_height = int(input_width / aspect_ratio_target)
290
+ x_start = 0
291
+ y_start = (input_height - new_height) // 2
292
+
293
+ image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
294
+ if not just_crop:
295
+ image = image.resize((target_width, target_height))
296
+
297
+ image = np.array(image)
298
+ image = cv2.GaussianBlur(image, (3, 3), 0)
299
+ frame_tensor = torch.from_numpy(image).float()
300
+ frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0
301
+ frame_tensor = frame_tensor.permute(2, 0, 1)
302
+ frame_tensor = (frame_tensor / 127.5) - 1.0
303
+ # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
304
+ return frame_tensor.unsqueeze(0).unsqueeze(2)
305
+
306
+
307
 
308
  def generate_low_resolution1(self, prompt: str, negative_prompt: str, height: int, width: int, duration_secs: float, guidance_scale: float, seed: Optional[int] = None, conditioning_items: Optional[List[PatchedConditioningItem]] = None) -> Tuple[str, str, int]:
309
  """
 
699
 
700
  def _prepare_conditioning_tensor_from_path(self, filepath: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
701
  """Carrega uma imagem, redimensiona, aplica padding e move para o dispositivo."""
702
+ tensor = self._load_image_to_tensor_with_resize_and_crop(filepath, height, width)
703
  tensor = F.pad(tensor, padding)
704
  return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
705