Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import os
|
|
@@ -7,211 +8,176 @@ import traceback
|
|
| 7 |
from pathlib import Path
|
| 8 |
|
| 9 |
# --- Import dos Serviços de Backend ---
|
| 10 |
-
try:
|
| 11 |
-
from api.ltx_server_refactored import video_generation_service
|
| 12 |
-
except ImportError:
|
| 13 |
-
print("ERRO FATAL: Não foi possível importar 'video_generation_service' de 'api.ltx_server_refactored'.")
|
| 14 |
-
sys.exit(1)
|
| 15 |
-
|
| 16 |
-
try:
|
| 17 |
-
from api.seedvr_server import SeedVRServer
|
| 18 |
-
except ImportError:
|
| 19 |
-
print("AVISO: Não foi possível importar SeedVRServer. A aba de upscaling SeedVR será desativada.")
|
| 20 |
-
SeedVRServer = None
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
seedvr_inference_server = SeedVRServer() if SeedVRServer else None
|
| 23 |
|
| 24 |
# --- ESTADO DA SESSÃO ---
|
| 25 |
def create_initial_state():
|
| 26 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# --- FUNÇÕES WRAPPER PARA A UI ---
|
| 29 |
|
| 30 |
-
def
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
):
|
| 36 |
-
"""
|
| 37 |
-
Função wrapper que decide qual pipeline de backend chamar, passando todas as configurações LTX.
|
| 38 |
-
"""
|
| 39 |
-
print(f"UI: Iniciando geração no modo: {generation_mode}")
|
| 40 |
-
|
| 41 |
-
try:
|
| 42 |
-
initial_image_conditions = []
|
| 43 |
if start_img:
|
| 44 |
num_frames_estimate = int(duration * 24)
|
| 45 |
items_list = [[start_img, 0, 1.0]]
|
| 46 |
-
|
| 47 |
|
| 48 |
used_seed = None if randomize_seed else seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
"
|
| 53 |
-
"
|
| 54 |
-
"
|
| 55 |
-
"
|
| 56 |
}
|
| 57 |
-
|
| 58 |
-
# Decide qual função de backend chamar com base no modo
|
| 59 |
-
if generation_mode == "Narrativa (Múltiplos Prompts)":
|
| 60 |
-
video_path, tensor_path, final_seed = video_generation_service.generate_narrative_low(
|
| 61 |
-
prompt=prompt, negative_prompt=neg_prompt,
|
| 62 |
-
height=height, width=width, duration=duration,
|
| 63 |
-
guidance_scale=cfg, seed=used_seed,
|
| 64 |
-
initial_image_conditions=initial_image_conditions,
|
| 65 |
-
ltx_configs_override=ltx_configs,
|
| 66 |
-
)
|
| 67 |
-
else: # Modo "Simples (Prompt Único)"
|
| 68 |
-
video_path, tensor_path, final_seed = video_generation_service.generate_single_low(
|
| 69 |
-
prompt=prompt, negative_prompt=neg_prompt,
|
| 70 |
-
height=height, width=width, duration=duration,
|
| 71 |
-
guidance_scale=cfg, seed=used_seed,
|
| 72 |
-
initial_image_conditions=initial_image_conditions,
|
| 73 |
-
ltx_configs_override=ltx_configs,
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
new_state = {"low_res_video": video_path, "low_res_latents": tensor_path, "used_seed": final_seed}
|
| 77 |
|
| 78 |
return video_path, new_state, gr.update(visible=True)
|
| 79 |
-
|
| 80 |
-
except Exception as e:
|
| 81 |
-
error_message = f"❌ Ocorreu um erro na Geração Base:\n{e}"
|
| 82 |
-
print(f"{error_message}\nDetalhes: {traceback.format_exc()}")
|
| 83 |
-
raise gr.Error(error_message)
|
| 84 |
-
|
| 85 |
def run_ltx_refinement(state, prompt, neg_prompt, cfg, progress=gr.Progress(track_tqdm=True)):
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
| 89 |
video_path, tensor_path = video_generation_service.generate_upscale_denoise(
|
| 90 |
-
latents_path=state["low_res_latents"],
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
| 92 |
)
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
return video_path, state
|
| 95 |
-
|
| 96 |
-
raise gr.Error(f"Erro no Refinamento LTX: {e}")
|
| 97 |
-
|
| 98 |
def run_seedvr_upscaling(state, seed, resolution, batch_size, fps, progress=gr.Progress(track_tqdm=True)):
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
| 105 |
output_filepath = seedvr_inference_server.run_inference(
|
| 106 |
-
file_path=
|
| 107 |
batch_size=batch_size, fps=fps, progress=progress_wrapper
|
| 108 |
)
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
# --- DEFINIÇÃO DA INTERFACE GRADIO ---
|
| 114 |
with gr.Blocks() as demo:
|
| 115 |
gr.Markdown("# LTX Video - Geração e Pós-Produção por Etapas")
|
| 116 |
|
| 117 |
app_state = gr.State(value=create_initial_state())
|
| 118 |
|
|
|
|
| 119 |
with gr.Row():
|
| 120 |
with gr.Column(scale=1):
|
| 121 |
gr.Markdown("### Etapa 1: Configurações de Geração")
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
-
label="
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
duration_input = gr.Slider(label="Duração Total (s)", value=1, step=1, minimum=1, maximum=40)
|
| 133 |
-
with gr.Row():
|
| 134 |
-
height_input = gr.Slider(label="Height", value=720, step=32, minimum=256, maximum=1024)
|
| 135 |
-
width_input = gr.Slider(label="Width", value=720, step=32, minimum=256, maximum=1024)
|
| 136 |
-
with gr.Row():
|
| 137 |
-
seed_input = gr.Number(label="Seed", value=42, precision=0)
|
| 138 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 139 |
-
|
| 140 |
-
with gr.Accordion("Opções Adicionais LTX (Avançado)", open=False):
|
| 141 |
-
cfg_input = gr.Slider(label="Guidance Scale (CFG)", info="Afeta o refinamento (se usado) e não tem efeito no First Pass dos modelos 'distilled'.", value=0.0, step=1, minimum=0.0, maximum=10.0)
|
| 142 |
-
fp_num_inference_steps = gr.Slider(label="Passos de Inferência (First Pass)", minimum=10, maximum=100, step=1, value=10)
|
| 143 |
-
ship_initial_inference_steps = gr.Slider(label="Passos de Inferência (Ship First)", minimum=0, maximum=100, step=1, value=0)
|
| 144 |
-
ship_final_inference_steps = gr.Slider(label="Passos de Inferência (Ship Last)", minimum=0, maximum=100, step=1, value=0)
|
| 145 |
-
|
| 146 |
-
with gr.Tabs():
|
| 147 |
-
with gr.TabItem("Guiagem (First Pass)"):
|
| 148 |
-
fp_guidance_preset = gr.Dropdown(
|
| 149 |
-
label="Preset de Guiagem",
|
| 150 |
-
choices=["Padrão (Recomendado)", "Agressivo", "Suave", "Customizado"],
|
| 151 |
-
value="Padrão (Recomendado)", info="Muda o comportamento da guiagem ao longo da difusão."
|
| 152 |
-
)
|
| 153 |
-
with gr.Group(visible=False) as custom_guidance_group:
|
| 154 |
-
gr.Markdown("⚠️ Edite as listas em formato JSON. Ex: `[1, 2, 3]`")
|
| 155 |
-
fp_guidance_scale_list = gr.Textbox(label="Lista de Guidance Scale", value="[1, 1, 6, 8, 6, 1, 1]")
|
| 156 |
-
fp_stg_scale_list = gr.Textbox(label="Lista de STG Scale (Movimento)", value="[0, 0, 4, 4, 4, 2, 1]")
|
| 157 |
-
fp_timesteps_list = gr.Textbox(label="Lista de Guidance Timesteps", value="[1.0, 0.996, 0.9933, 0.9850, 0.9767, 0.9008, 0.6180]")
|
| 158 |
-
|
| 159 |
-
generate_low_btn = gr.Button("1. Gerar Vídeo Base", variant="primary")
|
| 160 |
|
| 161 |
with gr.Column(scale=1):
|
| 162 |
gr.Markdown("### Vídeo Base Gerado")
|
| 163 |
low_res_video_output = gr.Video(label="O resultado da Etapa 1 aparecerá aqui", interactive=False)
|
| 164 |
|
|
|
|
| 165 |
with gr.Group(visible=False) as post_prod_group:
|
|
|
|
| 166 |
gr.Markdown("## Etapa 2: Pós-Produção")
|
| 167 |
-
|
|
|
|
| 168 |
with gr.Tabs():
|
|
|
|
| 169 |
with gr.TabItem("🚀 Upscaler Textura (LTX)"):
|
| 170 |
with gr.Row():
|
| 171 |
with gr.Column(scale=1):
|
| 172 |
-
gr.Markdown("
|
| 173 |
-
|
|
|
|
| 174 |
with gr.Column(scale=1):
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
| 177 |
with gr.TabItem("✨ Upscaler SeedVR"):
|
| 178 |
with gr.Row():
|
| 179 |
with gr.Column(scale=1):
|
|
|
|
| 180 |
seedvr_seed = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
|
| 181 |
-
seedvr_resolution = gr.Slider(minimum=720, maximum=1440, value=1072, step=8, label="Resolução Vertical")
|
| 182 |
seedvr_batch_size = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
|
| 183 |
seedvr_fps_output = gr.Number(label="FPS de Saída (0 = original)", value=0)
|
| 184 |
run_seedvr_button = gr.Button("Iniciar Upscaling SeedVR", variant="primary", interactive=(seedvr_inference_server is not None))
|
|
|
|
|
|
|
| 185 |
with gr.Column(scale=1):
|
|
|
|
| 186 |
seedvr_video_output = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
|
| 187 |
-
seedvr_status_box = gr.Textbox(label="Status", value="Aguardando...", lines=3, interactive=False)
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
fp_guidance_preset.change(fn=update_custom_guidance_visibility, inputs=fp_guidance_preset, outputs=custom_guidance_group)
|
| 194 |
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
generate_low_btn.click(
|
| 200 |
-
fn=
|
| 201 |
-
inputs=[
|
| 202 |
-
generation_mode_input, prompt_input, neg_prompt_input, start_image, height_input, width_input,
|
| 203 |
-
duration_input, cfg_input, seed_input, randomize_seed,
|
| 204 |
-
*all_ltx_inputs
|
| 205 |
-
],
|
| 206 |
outputs=[low_res_video_output, app_state, post_prod_group]
|
| 207 |
)
|
| 208 |
|
|
|
|
| 209 |
ltx_refine_btn.click(
|
| 210 |
fn=run_ltx_refinement,
|
| 211 |
inputs=[app_state, prompt_input, neg_prompt_input, cfg_input],
|
| 212 |
outputs=[ltx_refined_video_output, app_state]
|
| 213 |
)
|
| 214 |
|
|
|
|
| 215 |
run_seedvr_button.click(
|
| 216 |
fn=run_seedvr_upscaling,
|
| 217 |
inputs=[app_state, seedvr_seed, seedvr_resolution, seedvr_batch_size, seedvr_fps_output],
|
|
@@ -219,4 +185,4 @@ with gr.Blocks() as demo:
|
|
| 219 |
)
|
| 220 |
|
| 221 |
if __name__ == "__main__":
|
| 222 |
-
demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)
|
|
|
|
| 1 |
+
|
| 2 |
+
# app_refactored_with_postprod.py (FINAL VERSION with LTX Refinement)
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import os
|
|
|
|
| 8 |
from pathlib import Path
|
| 9 |
|
| 10 |
# --- Import dos Serviços de Backend ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# Serviço LTX para geração de vídeo base e refinamento de textura
|
| 13 |
+
from api.ltx_server_refactored import video_generation_service
|
| 14 |
+
|
| 15 |
+
# Serviço SeedVR para upscaling de alta qualidade
|
| 16 |
+
from api.seedvr_server import SeedVRServer
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# Inicializa o servidor SeedVR uma vez, se disponível
|
| 20 |
seedvr_inference_server = SeedVRServer() if SeedVRServer else None
|
| 21 |
|
| 22 |
# --- ESTADO DA SESSÃO ---
|
| 23 |
def create_initial_state():
|
| 24 |
+
return {
|
| 25 |
+
"low_res_video": None,
|
| 26 |
+
"low_res_latents": None,
|
| 27 |
+
"refined_video_ltx": None,
|
| 28 |
+
"refined_latents_ltx": None,
|
| 29 |
+
"used_seed": None
|
| 30 |
+
}
|
| 31 |
|
| 32 |
# --- FUNÇÕES WRAPPER PARA A UI ---
|
| 33 |
|
| 34 |
+
def run_generate_low(prompt, neg_prompt, start_img, height, width, duration, cfg, seed, randomize_seed, progress=gr.Progress(track_tqdm=True)):
|
| 35 |
+
"""Executa a primeira etapa: geração de um vídeo base em baixa resolução."""
|
| 36 |
+
print("UI: Chamando generate_low")
|
| 37 |
+
if True:
|
| 38 |
+
conditioning_items = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
if start_img:
|
| 40 |
num_frames_estimate = int(duration * 24)
|
| 41 |
items_list = [[start_img, 0, 1.0]]
|
| 42 |
+
conditioning_items = video_generation_service.prepare_condition_items(items_list, height, width, num_frames_estimate)
|
| 43 |
|
| 44 |
used_seed = None if randomize_seed else seed
|
| 45 |
+
video_path, tensor_path, final_seed = video_generation_service.generate_low(
|
| 46 |
+
prompt=prompt, negative_prompt=neg_prompt,
|
| 47 |
+
height=height, width=width, duration=duration,
|
| 48 |
+
guidance_scale=cfg, seed=used_seed,
|
| 49 |
+
conditioning_items=conditioning_items
|
| 50 |
+
)
|
| 51 |
|
| 52 |
+
new_state = {
|
| 53 |
+
"low_res_video": video_path,
|
| 54 |
+
"low_res_latents": tensor_path,
|
| 55 |
+
"refined_video_ltx": None,
|
| 56 |
+
"refined_latents_ltx": None,
|
| 57 |
+
"used_seed": final_seed
|
| 58 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
return video_path, new_state, gr.update(visible=True)
|
| 61 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
def run_ltx_refinement(state, prompt, neg_prompt, cfg, progress=gr.Progress(track_tqdm=True)):
|
| 63 |
+
"""Executa o processo de refinamento e upscaling de textura com o pipeline LTX."""
|
| 64 |
+
print("UI: Chamando run_ltx_refinement (generate_upscale_denoise)")
|
| 65 |
+
|
| 66 |
+
if True:
|
| 67 |
video_path, tensor_path = video_generation_service.generate_upscale_denoise(
|
| 68 |
+
latents_path=state["low_res_latents"],
|
| 69 |
+
prompt=prompt,
|
| 70 |
+
negative_prompt=neg_prompt,
|
| 71 |
+
guidance_scale=cfg,
|
| 72 |
+
seed=state["used_seed"]
|
| 73 |
)
|
| 74 |
+
|
| 75 |
+
# Atualiza o estado com os novos artefatos refinados
|
| 76 |
+
state["refined_video_ltx"] = video_path
|
| 77 |
+
state["refined_latents_ltx"] = tensor_path
|
| 78 |
+
|
| 79 |
return video_path, state
|
| 80 |
+
|
|
|
|
|
|
|
| 81 |
def run_seedvr_upscaling(state, seed, resolution, batch_size, fps, progress=gr.Progress(track_tqdm=True)):
|
| 82 |
+
"""Executa o processo de upscaling com SeedVR."""
|
| 83 |
+
|
| 84 |
+
video_path = state["low_res_video"]
|
| 85 |
+
print(f"▶️ Iniciando processo de upscaling SeedVR para o vídeo: {video_path}")
|
| 86 |
+
|
| 87 |
+
if True:
|
| 88 |
+
def progress_wrapper(p, desc=""):
|
| 89 |
+
progress(p, desc=desc)
|
| 90 |
output_filepath = seedvr_inference_server.run_inference(
|
| 91 |
+
file_path=video_path, seed=seed, resolution=resolution,
|
| 92 |
batch_size=batch_size, fps=fps, progress=progress_wrapper
|
| 93 |
)
|
| 94 |
+
final_message = f"✅ Processo SeedVR concluído!\nVídeo salvo em: {output_filepath}"
|
| 95 |
+
return gr.update(value=output_filepath, interactive=True), gr.update(value=final_message, interactive=False)
|
| 96 |
+
|
|
|
|
| 97 |
# --- DEFINIÇÃO DA INTERFACE GRADIO ---
|
| 98 |
with gr.Blocks() as demo:
|
| 99 |
gr.Markdown("# LTX Video - Geração e Pós-Produção por Etapas")
|
| 100 |
|
| 101 |
app_state = gr.State(value=create_initial_state())
|
| 102 |
|
| 103 |
+
# --- ETAPA 1: Geração Base ---
|
| 104 |
with gr.Row():
|
| 105 |
with gr.Column(scale=1):
|
| 106 |
gr.Markdown("### Etapa 1: Configurações de Geração")
|
| 107 |
+
prompt_input = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
|
| 108 |
+
neg_prompt_input = gr.Textbox(visible=False, label="Negative Prompt", value="worst quality, blurry, low quality, jittery", lines=2)
|
| 109 |
+
start_image = gr.Image(label="Imagem de Início (Opcional)", type="filepath", sources=["upload", "clipboard"])
|
| 110 |
|
| 111 |
+
with gr.Accordion("Parâmetros Avançados", open=False):
|
| 112 |
+
height_input = gr.Slider(label="Height", value=512, step=32, minimum=256, maximum=1024)
|
| 113 |
+
width_input = gr.Slider(label="Width", value=704, step=32, minimum=256, maximum=1024)
|
| 114 |
+
duration_input = gr.Slider(label="Duração (s)", value=4, step=1, minimum=1, maximum=10)
|
| 115 |
+
cfg_input = gr.Slider(label="Guidance Scale (CFG)", value=3.0, step=0.1, minimum=1.0, maximum=10.0)
|
| 116 |
+
seed_input = gr.Number(label="Seed", value=42, precision=0)
|
| 117 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 118 |
+
|
| 119 |
+
generate_low_btn = gr.Button("1. Gerar Vídeo Base (Low-Res)", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
with gr.Column(scale=1):
|
| 122 |
gr.Markdown("### Vídeo Base Gerado")
|
| 123 |
low_res_video_output = gr.Video(label="O resultado da Etapa 1 aparecerá aqui", interactive=False)
|
| 124 |
|
| 125 |
+
# --- ETAPA 2: Pós-Produção (no rodapé, em abas) ---
|
| 126 |
with gr.Group(visible=False) as post_prod_group:
|
| 127 |
+
gr.Markdown("<hr style='margin-top: 20px; margin-bottom: 20px;'>")
|
| 128 |
gr.Markdown("## Etapa 2: Pós-Produção")
|
| 129 |
+
gr.Markdown("Use o vídeo gerado acima como entrada para as ferramentas abaixo. **O prompt e a CFG da Etapa 1 serão reutilizados.**")
|
| 130 |
+
|
| 131 |
with gr.Tabs():
|
| 132 |
+
# --- ABA LTX REFINEMENT (AGORA FUNCIONAL) ---
|
| 133 |
with gr.TabItem("🚀 Upscaler Textura (LTX)"):
|
| 134 |
with gr.Row():
|
| 135 |
with gr.Column(scale=1):
|
| 136 |
+
gr.Markdown("### Parâmetros de Refinamento")
|
| 137 |
+
gr.Markdown("Esta etapa reutiliza o prompt, o prompt negativo e a CFG da Etapa 1 para manter a consistência.")
|
| 138 |
+
ltx_refine_btn = gr.Button("Aplicar Refinamento de Textura LTX", variant="primary")
|
| 139 |
with gr.Column(scale=1):
|
| 140 |
+
gr.Markdown("### Resultado do Refinamento")
|
| 141 |
+
ltx_refined_video_output = gr.Video(label="Vídeo com Textura Refinada (LTX)", interactive=False)
|
| 142 |
+
|
| 143 |
+
# --- ABA SEEDVR UPSCALER ---
|
| 144 |
with gr.TabItem("✨ Upscaler SeedVR"):
|
| 145 |
with gr.Row():
|
| 146 |
with gr.Column(scale=1):
|
| 147 |
+
gr.Markdown("### Parâmetros do SeedVR")
|
| 148 |
seedvr_seed = gr.Slider(minimum=0, maximum=999999, value=42, step=1, label="Seed")
|
| 149 |
+
seedvr_resolution = gr.Slider(minimum=720, maximum=1440, value=1072, step=8, label="Resolução Vertical (Altura)")
|
| 150 |
seedvr_batch_size = gr.Slider(minimum=1, maximum=16, value=4, step=1, label="Batch Size por GPU")
|
| 151 |
seedvr_fps_output = gr.Number(label="FPS de Saída (0 = original)", value=0)
|
| 152 |
run_seedvr_button = gr.Button("Iniciar Upscaling SeedVR", variant="primary", interactive=(seedvr_inference_server is not None))
|
| 153 |
+
if not seedvr_inference_server:
|
| 154 |
+
gr.Markdown("<p style='color: red;'>Serviço SeedVR não disponível.</p>")
|
| 155 |
with gr.Column(scale=1):
|
| 156 |
+
gr.Markdown("### Resultado do Upscaling")
|
| 157 |
seedvr_video_output = gr.Video(label="Vídeo com Upscale SeedVR", interactive=False)
|
| 158 |
+
seedvr_status_box = gr.Textbox(label="Status do Processamento", value="Aguardando...", lines=3, interactive=False)
|
| 159 |
|
| 160 |
+
# --- ABA MM-AUDIO ---
|
| 161 |
+
with gr.TabItem("🔊 Áudio (MM-Audio)"):
|
| 162 |
+
gr.Markdown("*(Funcionalidade futura para adicionar som aos vídeos)*")
|
|
|
|
|
|
|
| 163 |
|
| 164 |
+
# --- LÓGICA DE EVENTOS DA UI ---
|
| 165 |
+
|
| 166 |
+
# Botão da Etapa 1
|
|
|
|
| 167 |
generate_low_btn.click(
|
| 168 |
+
fn=run_generate_low,
|
| 169 |
+
inputs=[prompt_input, neg_prompt_input, start_image, height_input, width_input, duration_input, cfg_input, seed_input, randomize_seed],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
outputs=[low_res_video_output, app_state, post_prod_group]
|
| 171 |
)
|
| 172 |
|
| 173 |
+
# Botão da Aba LTX Refinement
|
| 174 |
ltx_refine_btn.click(
|
| 175 |
fn=run_ltx_refinement,
|
| 176 |
inputs=[app_state, prompt_input, neg_prompt_input, cfg_input],
|
| 177 |
outputs=[ltx_refined_video_output, app_state]
|
| 178 |
)
|
| 179 |
|
| 180 |
+
# Botão da Aba SeedVR
|
| 181 |
run_seedvr_button.click(
|
| 182 |
fn=run_seedvr_upscaling,
|
| 183 |
inputs=[app_state, seedvr_seed, seedvr_resolution, seedvr_batch_size, seedvr_fps_output],
|
|
|
|
| 185 |
)
|
| 186 |
|
| 187 |
if __name__ == "__main__":
|
| 188 |
+
demo.queue().launch(server_name="0.0.0.0", server_port=7860, debug=True, show_error=True)
|