euiiiia commited on
Commit
ab3ee25
·
verified ·
1 Parent(s): 22512f1

Delete LTX-Video/ltx_video/pipelines/pipeline_ltx_video1.py

Browse files
LTX-Video/ltx_video/pipelines/pipeline_ltx_video1.py DELETED
@@ -1,2116 +0,0 @@
1
- # Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
2
- import copy
3
- import inspect
4
- import math
5
- import re
6
- from contextlib import nullcontext
7
- from dataclasses import dataclass
8
- from typing import Any, Callable, Dict, List, Optional, Tuple, Union
9
-
10
- import torch
11
- import torch.nn.functional as F
12
- from diffusers.image_processor import VaeImageProcessor
13
- from diffusers.models import AutoencoderKL
14
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
15
- from diffusers.schedulers import DPMSolverMultistepScheduler
16
- #from diffusers.utils import deprecate, logging
17
- from diffusers.utils.torch_utils import randn_tensor
18
- from einops import rearrange
19
- from transformers import (
20
- T5EncoderModel,
21
- T5Tokenizer,
22
- AutoModelForCausalLM,
23
- AutoProcessor,
24
- AutoTokenizer,
25
- )
26
-
27
-
28
- from ltx_video.models.autoencoders.causal_video_autoencoder import (
29
- CausalVideoAutoencoder,
30
- )
31
- from ltx_video.models.autoencoders.vae_encode import (
32
- get_vae_size_scale_factor,
33
- latent_to_pixel_coords,
34
- vae_decode,
35
- vae_encode,
36
- )
37
- from ltx_video.models.transformers.symmetric_patchifier import Patchifier
38
- from ltx_video.models.transformers.transformer3d import Transformer3DModel
39
- from ltx_video.schedulers.rf import TimestepShifter
40
- from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
41
- from ltx_video.utils.prompt_enhance_utils import generate_cinematic_prompt
42
- from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
43
- from ltx_video.models.autoencoders.vae_encode import (
44
- un_normalize_latents,
45
- normalize_latents,
46
- )
47
-
48
- import warnings
49
- warnings.filterwarnings("ignore", category=UserWarning)
50
- warnings.filterwarnings("ignore", category=FutureWarning)
51
- warnings.filterwarnings("ignore", message=".*")
52
-
53
- from huggingface_hub import logging
54
-
55
- logging.set_verbosity_error()
56
- logging.set_verbosity_warning()
57
- logging.set_verbosity_info()
58
- logging.set_verbosity_debug()
59
-
60
-
61
- #logger = logging.get_logger(__name__) # pylint: disable=invalid-name
62
-
63
-
64
- class SpyLatent:
65
-
66
- """
67
- Uma classe para inspecionar tensores latentes em vários estágios de um pipeline.
68
- Imprime estatísticas e pode salvar visualizações decodificadas por um VAE.
69
- """
70
-
71
- import torch
72
- import os
73
- import traceback
74
- from einops import rearrange
75
- from torchvision.utils import save_image
76
-
77
- def __init__(self, vae=None, output_dir: str = "/app/output"):
78
- """
79
- Inicializa o espião.
80
-
81
- Args:
82
- vae: A instância do modelo VAE para decodificar os latentes. Se for None,
83
- a visualização será desativada.
84
- output_dir (str): O diretório padrão para salvar as imagens de visualização.
85
- """
86
- self.vae = vae
87
- self.output_dir = output_dir
88
- self.device = vae.device if hasattr(vae, 'device') else torch.device("cpu")
89
-
90
- if self.vae is None:
91
- print("[SpyLatent] AVISO: VAE não fornecido. A funcionalidade de visualização de imagem está desativada.")
92
-
93
- def inspect(
94
- self,
95
- tensor: torch.Tensor,
96
- tag: str,
97
- reference_shape_5d: tuple = None,
98
- save_visual: bool = True,
99
- ):
100
- """
101
- Inspeciona um tensor latente.
102
-
103
- Args:
104
- tensor (torch.Tensor): O tensor a ser inspecionado.
105
- tag (str): Um rótulo para identificar o ponto de inspeção nos logs.
106
- reference_shape_5d (tuple, optional): A forma 5D de referência (B, C, F, H, W)
107
- necessária se o tensor de entrada for 3D.
108
- save_visual (bool): Se True, decodifica com o VAE e salva uma imagem.
109
- """
110
- #print(f"\n--- [INSPEÇÃO DE LATENTE: {tag}] ---")
111
- #if not isinstance(tensor, torch.Tensor):
112
- # print(f" AVISO: O objeto fornecido para '{tag}' não é um tensor.")
113
- # print("--- [FIM DA INSPEÇÃO] ---\n")
114
- # return
115
-
116
- try:
117
- # --- Imprime Estatísticas do Tensor Original ---
118
- #self._print_stats("Tensor Original", tensor)
119
-
120
- # --- Converte para 5D se necessário ---
121
- tensor_5d = self._to_5d(tensor, reference_shape_5d)
122
- if tensor_5d is not None and tensor.ndim == 3:
123
- self._print_stats("Convertido para 5D", tensor_5d)
124
-
125
- # --- Visualização com VAE ---
126
- if save_visual and self.vae is not None and tensor_5d is not None:
127
- os.makedirs(self.output_dir, exist_ok=True)
128
- #print(f" VISUALIZAÇÃO (VAE): Salvando imagem em {self.output_dir}...")
129
-
130
- frame_idx_to_viz = min(1, tensor_5d.shape[2] - 1)
131
- if frame_idx_to_viz < 0:
132
- print(" VISUALIZAÇÃO (VAE): Tensor não tem frames para visualizar.")
133
- else:
134
- #print(f" VISUALIZAÇÃO (VAE): Usando frame de índice {frame_idx_to_viz}.")
135
- latent_slice = tensor_5d[:, :, frame_idx_to_viz:frame_idx_to_viz+1, :, :]
136
-
137
- with torch.no_grad(), torch.autocast(device_type=self.device.type):
138
- pixel_slice = self.vae.decode(latent_slice / self.vae.config.scaling_factor).sample
139
-
140
- save_image((pixel_slice / 2 + 0.5).clamp(0, 1), os.path.join(self.output_dir, f"inspect_{tag.lower()}.png"))
141
- print(" VISUALIZAÇÃO (VAE): Imagem salva.")
142
-
143
- except Exception as e:
144
- #print(f" ERRO na inspeção: {e}")
145
- traceback.print_exc()
146
-
147
- def _to_5d(self, tensor: torch.Tensor, shape_5d: tuple) -> torch.Tensor:
148
- """Converte um tensor 3D patchificado de volta para 5D."""
149
- if tensor.ndim == 5:
150
- return tensor
151
- if tensor.ndim == 3 and shape_5d:
152
- try:
153
- b, c, f, h, w = shape_5d
154
- return rearrange(tensor, "b (f h w) c -> b c f h w", c=c, f=f, h=h, w=w)
155
- except Exception as e:
156
- #print(f" AVISO: Erro ao rearranjar tensor 3D para 5D: {e}. A visualização pode falhar.")
157
- return None
158
- return None
159
-
160
- def _print_stats(self, prefix: str, tensor: torch.Tensor):
161
- """Helper para imprimir estatísticas de um tensor."""
162
- mean = tensor.mean().item()
163
- std = tensor.std().item()
164
- min_val = tensor.min().item()
165
- max_val = tensor.max().item()
166
- print(f" {prefix}: {tensor.shape}")
167
-
168
-
169
-
170
-
171
- ASPECT_RATIO_1024_BIN = {
172
- "0.25": [512.0, 2048.0],
173
- "0.28": [512.0, 1856.0],
174
- "0.32": [576.0, 1792.0],
175
- "0.33": [576.0, 1728.0],
176
- "0.35": [576.0, 1664.0],
177
- "0.4": [640.0, 1600.0],
178
- "0.42": [640.0, 1536.0],
179
- "0.48": [704.0, 1472.0],
180
- "0.5": [704.0, 1408.0],
181
- "0.52": [704.0, 1344.0],
182
- "0.57": [768.0, 1344.0],
183
- "0.6": [768.0, 1280.0],
184
- "0.68": [832.0, 1216.0],
185
- "0.72": [832.0, 1152.0],
186
- "0.78": [896.0, 1152.0],
187
- "0.82": [896.0, 1088.0],
188
- "0.88": [960.0, 1088.0],
189
- "0.94": [960.0, 1024.0],
190
- "1.0": [1024.0, 1024.0],
191
- "1.07": [1024.0, 960.0],
192
- "1.13": [1088.0, 960.0],
193
- "1.21": [1088.0, 896.0],
194
- "1.29": [1152.0, 896.0],
195
- "1.38": [1152.0, 832.0],
196
- "1.46": [1216.0, 832.0],
197
- "1.67": [1280.0, 768.0],
198
- "1.75": [1344.0, 768.0],
199
- "2.0": [1408.0, 704.0],
200
- "2.09": [1472.0, 704.0],
201
- "2.4": [1536.0, 640.0],
202
- "2.5": [1600.0, 640.0],
203
- "3.0": [1728.0, 576.0],
204
- "4.0": [2048.0, 512.0],
205
- }
206
-
207
- ASPECT_RATIO_512_BIN = {
208
- "0.25": [256.0, 1024.0],
209
- "0.28": [256.0, 928.0],
210
- "0.32": [288.0, 896.0],
211
- "0.33": [288.0, 864.0],
212
- "0.35": [288.0, 832.0],
213
- "0.4": [320.0, 800.0],
214
- "0.42": [320.0, 768.0],
215
- "0.48": [352.0, 736.0],
216
- "0.5": [352.0, 704.0],
217
- "0.52": [352.0, 672.0],
218
- "0.57": [384.0, 672.0],
219
- "0.6": [384.0, 640.0],
220
- "0.68": [416.0, 608.0],
221
- "0.72": [416.0, 576.0],
222
- "0.78": [448.0, 576.0],
223
- "0.82": [448.0, 544.0],
224
- "0.88": [480.0, 544.0],
225
- "0.94": [480.0, 512.0],
226
- "1.0": [512.0, 512.0],
227
- "1.07": [512.0, 480.0],
228
- "1.13": [544.0, 480.0],
229
- "1.21": [544.0, 448.0],
230
- "1.29": [576.0, 448.0],
231
- "1.38": [576.0, 416.0],
232
- "1.46": [608.0, 416.0],
233
- "1.67": [640.0, 384.0],
234
- "1.75": [672.0, 384.0],
235
- "2.0": [704.0, 352.0],
236
- "2.09": [736.0, 352.0],
237
- "2.4": [768.0, 320.0],
238
- "2.5": [800.0, 320.0],
239
- "3.0": [864.0, 288.0],
240
- "4.0": [1024.0, 256.0],
241
- }
242
-
243
-
244
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
245
- def retrieve_timesteps(
246
- scheduler,
247
- num_inference_steps: Optional[int] = None,
248
- device: Optional[Union[str, torch.device]] = None,
249
- timesteps: Optional[List[int]] = None,
250
- skip_initial_inference_steps: Optional[int] = 0,
251
- skip_final_inference_steps: Optional[int] = 0,
252
- **kwargs,
253
- ):
254
- """
255
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
256
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
257
-
258
- Args:
259
- scheduler (`SchedulerMixin`):
260
- The scheduler to get timesteps from.
261
- num_inference_steps (`int`):
262
- The number of diffusion steps used when generating samples with a pre-trained model. If used,
263
- `timesteps` must be `None`.
264
- device (`str` or `torch.device`, *optional*):
265
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
266
- timesteps (`List[int]`, *optional*):
267
- Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
268
- timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
269
- must be `None`.
270
- max_timestep ('float', *optional*, defaults to 1.0):
271
- The initial noising level for image-to-image/video-to-video. The list if timestamps will be
272
- truncated to start with a timestamp greater or equal to this.
273
-
274
- Returns:
275
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
276
- second element is the number of inference steps.
277
- """
278
- if timesteps is not None:
279
- accepts_timesteps = "timesteps" in set(
280
- inspect.signature(scheduler.set_timesteps).parameters.keys()
281
- )
282
- if not accepts_timesteps:
283
- raise ValueError(
284
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
285
- f" timestep schedules. Please check whether you are using the correct scheduler."
286
- )
287
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
288
- timesteps = scheduler.timesteps
289
- num_inference_steps = len(timesteps)
290
- else:
291
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
292
- timesteps = scheduler.timesteps
293
-
294
- if (
295
- skip_initial_inference_steps < 0
296
- or skip_final_inference_steps < 0
297
- or skip_initial_inference_steps + skip_final_inference_steps
298
- >= num_inference_steps
299
- ):
300
- raise ValueError(
301
- "invalid skip inference step values: must be non-negative and the sum of skip_initial_inference_steps and skip_final_inference_steps must be less than the number of inference steps"
302
- )
303
-
304
- timesteps = timesteps[
305
- skip_initial_inference_steps : len(timesteps) - skip_final_inference_steps
306
- ]
307
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
308
- num_inference_steps = len(timesteps)
309
-
310
- try:
311
- print(f"[LTX]LATENTS {latents.shape}")
312
- except Exception:
313
- pass
314
-
315
-
316
- return timesteps, num_inference_steps
317
-
318
-
319
- @dataclass
320
- class ConditioningItem:
321
- """
322
- Defines a single frame-conditioning item - a single frame or a sequence of frames.
323
-
324
- Attributes:
325
- media_item (torch.Tensor): shape=(b, 3, f, h, w). The media item to condition on.
326
- media_frame_number (int): The start-frame number of the media item in the generated video.
327
- conditioning_strength (float): The strength of the conditioning (1.0 = full conditioning).
328
- media_x (Optional[int]): Optional left x coordinate of the media item in the generated frame.
329
- media_y (Optional[int]): Optional top y coordinate of the media item in the generated frame.
330
- """
331
-
332
- media_item: torch.Tensor
333
- media_frame_number: int
334
- conditioning_strength: float
335
- media_x: Optional[int] = None
336
- media_y: Optional[int] = None
337
-
338
-
339
- class LTXVideoPipeline(DiffusionPipeline):
340
- r"""
341
- Pipeline for text-to-image generation using LTX-Video.
342
-
343
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
344
- library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
345
-
346
- Args:
347
- vae ([`AutoencoderKL`]):
348
- Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
349
- text_encoder ([`T5EncoderModel`]):
350
- Frozen text-encoder. This uses
351
- [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
352
- [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
353
- tokenizer (`T5Tokenizer`):
354
- Tokenizer of class
355
- [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
356
- transformer ([`Transformer2DModel`]):
357
- A text conditioned `Transformer2DModel` to denoise the encoded image latents.
358
- scheduler ([`SchedulerMixin`]):
359
- A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
360
- """
361
-
362
-
363
-
364
- bad_punct_regex = re.compile(
365
- r"["
366
- + "#®•©™&@·º½¾¿¡§~"
367
- + r"\)"
368
- + r"\("
369
- + r"\]"
370
- + r"\["
371
- + r"\}"
372
- + r"\{"
373
- + r"\|"
374
- + "\\"
375
- + r"\/"
376
- + r"\*"
377
- + r"]{1,}"
378
- ) # noqa
379
-
380
- _optional_components = [
381
- "tokenizer",
382
- "text_encoder",
383
- "prompt_enhancer_image_caption_model",
384
- "prompt_enhancer_image_caption_processor",
385
- "prompt_enhancer_llm_model",
386
- "prompt_enhancer_llm_tokenizer",
387
- ]
388
- model_cpu_offload_seq = "prompt_enhancer_image_caption_model->prompt_enhancer_llm_model->text_encoder->transformer->vae"
389
-
390
- def __init__(
391
- self,
392
- tokenizer: T5Tokenizer,
393
- text_encoder: T5EncoderModel,
394
- vae: AutoencoderKL,
395
- transformer: Transformer3DModel,
396
- scheduler: DPMSolverMultistepScheduler,
397
- patchifier: Patchifier,
398
- prompt_enhancer_image_caption_model: AutoModelForCausalLM,
399
- prompt_enhancer_image_caption_processor: AutoProcessor,
400
- prompt_enhancer_llm_model: AutoModelForCausalLM,
401
- prompt_enhancer_llm_tokenizer: AutoTokenizer,
402
- allowed_inference_steps: Optional[List[float]] = None,
403
- ):
404
- super().__init__()
405
-
406
- self.register_modules(
407
- tokenizer=tokenizer,
408
- text_encoder=text_encoder,
409
- vae=vae,
410
- transformer=transformer,
411
- scheduler=scheduler,
412
- patchifier=patchifier,
413
- prompt_enhancer_image_caption_model=prompt_enhancer_image_caption_model,
414
- prompt_enhancer_image_caption_processor=prompt_enhancer_image_caption_processor,
415
- prompt_enhancer_llm_model=prompt_enhancer_llm_model,
416
- prompt_enhancer_llm_tokenizer=prompt_enhancer_llm_tokenizer,
417
- )
418
-
419
- self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(
420
- self.vae
421
- )
422
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
423
-
424
- self.allowed_inference_steps = allowed_inference_steps
425
-
426
- self.spy = SpyLatent(vae=vae)
427
-
428
- def mask_text_embeddings(self, emb, mask):
429
- if emb.shape[0] == 1:
430
- keep_index = mask.sum().item()
431
- return emb[:, :, :keep_index, :], keep_index
432
- else:
433
- masked_feature = emb * mask[:, None, :, None]
434
- return masked_feature, emb.shape[2]
435
-
436
- # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
437
- def encode_prompt(
438
- self,
439
- prompt: Union[str, List[str]],
440
- do_classifier_free_guidance: bool = True,
441
- negative_prompt: str = "",
442
- num_images_per_prompt: int = 1,
443
- device: Optional[torch.device] = None,
444
- prompt_embeds: Optional[torch.FloatTensor] = None,
445
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
446
- prompt_attention_mask: Optional[torch.FloatTensor] = None,
447
- negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
448
- text_encoder_max_tokens: int = 256,
449
- **kwargs,
450
- ):
451
- r"""
452
- Encodes the prompt into text encoder hidden states.
453
-
454
- Args:
455
- prompt (`str` or `List[str]`, *optional*):
456
- prompt to be encoded
457
- negative_prompt (`str` or `List[str]`, *optional*):
458
- The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
459
- instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
460
- This should be "".
461
- do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
462
- whether to use classifier free guidance or not
463
- num_images_per_prompt (`int`, *optional*, defaults to 1):
464
- number of images that should be generated per prompt
465
- device: (`torch.device`, *optional*):
466
- torch device to place the resulting embeddings on
467
- prompt_embeds (`torch.FloatTensor`, *optional*):
468
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
469
- provided, text embeddings will be generated from `prompt` input argument.
470
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
471
- Pre-generated negative text embeddings.
472
- """
473
-
474
- if "mask_feature" in kwargs:
475
- deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
476
- #deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
477
-
478
- if device is None:
479
- device = self._execution_device
480
-
481
- if prompt is not None and isinstance(prompt, str):
482
- batch_size = 1
483
- elif prompt is not None and isinstance(prompt, list):
484
- batch_size = len(prompt)
485
- else:
486
- batch_size = prompt_embeds.shape[0]
487
-
488
- # See Section 3.1. of the paper.
489
- max_length = 256
490
- #(
491
- # text_encoder_max_tokens # TPU supports only lengths multiple of 128
492
- #)
493
- if prompt_embeds is None:
494
- assert (
495
- self.text_encoder is not None
496
- ), "You should provide either prompt_embeds or self.text_encoder should not be None,"
497
- text_enc_device = next(self.text_encoder.parameters()).device
498
- prompt = self._text_preprocessing(prompt)
499
- text_inputs = self.tokenizer(
500
- prompt,
501
- padding="max_length",
502
- max_length=max_length,
503
- truncation=True,
504
- add_special_tokens=True,
505
- return_tensors="pt",
506
- )
507
- text_input_ids = text_inputs.input_ids
508
- untruncated_ids = self.tokenizer(
509
- prompt, padding="longest", return_tensors="pt"
510
- ).input_ids
511
-
512
- if untruncated_ids.shape[-1] >= text_input_ids.shape[
513
- -1
514
- ] and not torch.equal(text_input_ids, untruncated_ids):
515
- removed_text = self.tokenizer.batch_decode(
516
- untruncated_ids[:, max_length - 1 : -1]
517
- )
518
- #logger.warning(
519
- # "The following part of your input was truncated because CLIP can only handle sequences up to"
520
- # f" {max_length} tokens: {removed_text}"
521
- #)
522
-
523
- prompt_attention_mask = text_inputs.attention_mask
524
- prompt_attention_mask = prompt_attention_mask.to(text_enc_device)
525
- prompt_attention_mask = prompt_attention_mask.to(device)
526
-
527
- prompt_embeds = self.text_encoder(
528
- text_input_ids.to(text_enc_device), attention_mask=prompt_attention_mask
529
- )
530
- prompt_embeds = prompt_embeds[0]
531
-
532
- if self.text_encoder is not None:
533
- dtype = self.text_encoder.dtype
534
- elif self.transformer is not None:
535
- dtype = self.transformer.dtype
536
- else:
537
- dtype = None
538
-
539
- prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
540
-
541
- bs_embed, seq_len, _ = prompt_embeds.shape
542
- # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
543
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
544
- prompt_embeds = prompt_embeds.view(
545
- bs_embed * num_images_per_prompt, seq_len, -1
546
- )
547
- prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt)
548
- prompt_attention_mask = prompt_attention_mask.view(
549
- bs_embed * num_images_per_prompt, -1
550
- )
551
-
552
- # get unconditional embeddings for classifier free guidance
553
- if do_classifier_free_guidance and negative_prompt_embeds is None:
554
- uncond_tokens = self._text_preprocessing(negative_prompt)
555
- uncond_tokens = uncond_tokens * batch_size
556
- max_length = prompt_embeds.shape[1]
557
- uncond_input = self.tokenizer(
558
- uncond_tokens,
559
- padding="max_length",
560
- max_length=max_length,
561
- truncation=True,
562
- return_attention_mask=True,
563
- add_special_tokens=True,
564
- return_tensors="pt",
565
- )
566
- negative_prompt_attention_mask = uncond_input.attention_mask
567
- negative_prompt_attention_mask = negative_prompt_attention_mask.to(
568
- text_enc_device
569
- )
570
-
571
- negative_prompt_embeds = self.text_encoder(
572
- uncond_input.input_ids.to(text_enc_device),
573
- attention_mask=negative_prompt_attention_mask,
574
- )
575
- negative_prompt_embeds = negative_prompt_embeds[0]
576
-
577
- if do_classifier_free_guidance:
578
- # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
579
- seq_len = negative_prompt_embeds.shape[1]
580
-
581
- negative_prompt_embeds = negative_prompt_embeds.to(
582
- dtype=dtype, device=device
583
- )
584
-
585
- negative_prompt_embeds = negative_prompt_embeds.repeat(
586
- 1, num_images_per_prompt, 1
587
- )
588
- negative_prompt_embeds = negative_prompt_embeds.view(
589
- batch_size * num_images_per_prompt, seq_len, -1
590
- )
591
-
592
- negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
593
- 1, num_images_per_prompt
594
- )
595
- negative_prompt_attention_mask = negative_prompt_attention_mask.view(
596
- bs_embed * num_images_per_prompt, -1
597
- )
598
- else:
599
- negative_prompt_embeds = None
600
- negative_prompt_attention_mask = None
601
-
602
- return (
603
- prompt_embeds,
604
- prompt_attention_mask,
605
- negative_prompt_embeds,
606
- negative_prompt_attention_mask,
607
- )
608
-
609
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
610
- def prepare_extra_step_kwargs(self, generator, eta):
611
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
612
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
613
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
614
- # and should be between [0, 1]
615
-
616
- accepts_eta = "eta" in set(
617
- inspect.signature(self.scheduler.step).parameters.keys()
618
- )
619
- extra_step_kwargs = {}
620
- if accepts_eta:
621
- extra_step_kwargs["eta"] = eta
622
-
623
- # check if the scheduler accepts generator
624
- accepts_generator = "generator" in set(
625
- inspect.signature(self.scheduler.step).parameters.keys()
626
- )
627
- if accepts_generator:
628
- extra_step_kwargs["generator"] = generator
629
- return extra_step_kwargs
630
-
631
- def check_inputs(
632
- self,
633
- prompt,
634
- height,
635
- width,
636
- negative_prompt,
637
- prompt_embeds=None,
638
- negative_prompt_embeds=None,
639
- prompt_attention_mask=None,
640
- negative_prompt_attention_mask=None,
641
- enhance_prompt=False,
642
- ):
643
- if height % 8 != 0 or width % 8 != 0:
644
- raise ValueError(
645
- f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
646
- )
647
-
648
- if prompt is not None and prompt_embeds is not None:
649
- raise ValueError(
650
- f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
651
- " only forward one of the two."
652
- )
653
- elif prompt is None and prompt_embeds is None:
654
- raise ValueError(
655
- "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
656
- )
657
- elif prompt is not None and (
658
- not isinstance(prompt, str) and not isinstance(prompt, list)
659
- ):
660
- raise ValueError(
661
- f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
662
- )
663
-
664
- if prompt is not None and negative_prompt_embeds is not None:
665
- raise ValueError(
666
- f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
667
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
668
- )
669
-
670
- if negative_prompt is not None and negative_prompt_embeds is not None:
671
- raise ValueError(
672
- f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
673
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
674
- )
675
-
676
- if prompt_embeds is not None and prompt_attention_mask is None:
677
- raise ValueError(
678
- "Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
679
- )
680
-
681
- if (
682
- negative_prompt_embeds is not None
683
- and negative_prompt_attention_mask is None
684
- ):
685
- raise ValueError(
686
- "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
687
- )
688
-
689
- if prompt_embeds is not None and negative_prompt_embeds is not None:
690
- if prompt_embeds.shape != negative_prompt_embeds.shape:
691
- raise ValueError(
692
- "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
693
- f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
694
- f" {negative_prompt_embeds.shape}."
695
- )
696
- if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
697
- raise ValueError(
698
- "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
699
- f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
700
- f" {negative_prompt_attention_mask.shape}."
701
- )
702
-
703
- if enhance_prompt:
704
- assert (
705
- self.prompt_enhancer_image_caption_model is not None
706
- ), "Image caption model must be initialized if enhance_prompt is True"
707
- assert (
708
- self.prompt_enhancer_image_caption_processor is not None
709
- ), "Image caption processor must be initialized if enhance_prompt is True"
710
- assert (
711
- self.prompt_enhancer_llm_model is not None
712
- ), "Text prompt enhancer model must be initialized if enhance_prompt is True"
713
- assert (
714
- self.prompt_enhancer_llm_tokenizer is not None
715
- ), "Text prompt enhancer tokenizer must be initialized if enhance_prompt is True"
716
-
717
- def _text_preprocessing(self, text):
718
- if not isinstance(text, (tuple, list)):
719
- text = [text]
720
-
721
- def process(text: str):
722
- text = text.strip()
723
- return text
724
-
725
- return [process(t) for t in text]
726
-
727
- @staticmethod
728
- def add_noise_to_image_conditioning_latents(
729
- t: float,
730
- init_latents: torch.Tensor,
731
- latents: torch.Tensor,
732
- noise_scale: float,
733
- conditioning_mask: torch.Tensor,
734
- generator,
735
- eps=1e-6,
736
- ):
737
- """
738
- Add timestep-dependent noise to the hard-conditioning latents.
739
- This helps with motion continuity, especially when conditioned on a single frame.
740
- """
741
- noise = randn_tensor(
742
- latents.shape,
743
- generator=generator,
744
- device=latents.device,
745
- dtype=latents.dtype,
746
- )
747
- # Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
748
- need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
749
- noised_latents = init_latents + noise_scale * noise * (t**2)
750
- latents = torch.where(need_to_noise, noised_latents, latents)
751
- return latents
752
-
753
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
754
- def prepare_latents(
755
- self,
756
- latents: torch.Tensor | None,
757
- media_items: torch.Tensor | None,
758
- timestep: float,
759
- latent_shape: torch.Size | Tuple[Any, ...],
760
- dtype: torch.dtype,
761
- device: torch.device,
762
- generator: torch.Generator | List[torch.Generator],
763
- vae_per_channel_normalize: bool = True,
764
- ):
765
- """
766
- Prepare the initial latent tensor to be denoised.
767
- The latents are either pure noise or a noised version of the encoded media items.
768
- Args:
769
- latents (`torch.FloatTensor` or `None`):
770
- The latents to use (provided by the user) or `None` to create new latents.
771
- media_items (`torch.FloatTensor` or `None`):
772
- An image or video to be updated using img2img or vid2vid. The media item is encoded and noised.
773
- timestep (`float`):
774
- The timestep to noise the encoded media_items to.
775
- latent_shape (`torch.Size`):
776
- The target latent shape.
777
- dtype (`torch.dtype`):
778
- The target dtype.
779
- device (`torch.device`):
780
- The target device.
781
- generator (`torch.Generator` or `List[torch.Generator]`):
782
- Generator(s) to be used for the noising process.
783
- vae_per_channel_normalize ('bool'):
784
- When encoding the media_items, whether to normalize the latents per-channel.
785
- Returns:
786
- `torch.FloatTensor`: The latents to be used for the denoising process. This is a tensor of shape
787
- (batch_size, num_channels, height, width).
788
- """
789
- if isinstance(generator, list) and len(generator) != latent_shape[0]:
790
- raise ValueError(
791
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
792
- f" size of {latent_shape[0]}. Make sure the batch size matches the length of the generators."
793
- )
794
-
795
- # Initialize the latents with the given latents or encoded media item, if provided
796
- assert (
797
- latents is None or media_items is None
798
- ), "Cannot provide both latents and media_items. Please provide only one of the two."
799
-
800
- assert (
801
- latents is None and media_items is None or timestep < 1.0
802
- ), "Input media_item or latents are provided, but they will be replaced with noise."
803
-
804
- if media_items is not None:
805
- latents = vae_encode(
806
- media_items.to(dtype=self.vae.dtype, device=self.vae.device),
807
- self.vae,
808
- vae_per_channel_normalize=vae_per_channel_normalize,
809
- )
810
- if latents is not None:
811
- assert (
812
- latents.shape == latent_shape
813
- ), f"Latents have to be of shape {latent_shape} but are {latents.shape}."
814
- latents = latents.to(device=device, dtype=dtype)
815
-
816
- # For backward compatibility, generate in the "patchified" shape and rearrange
817
- b, c, f, h, w = latent_shape
818
- noise = randn_tensor(
819
- (b, f * h * w, c), generator=generator, device=device, dtype=dtype
820
- )
821
- noise = rearrange(noise, "b (f h w) c -> b c f h w", f=f, h=h, w=w)
822
-
823
- # scale the initial noise by the standard deviation required by the scheduler
824
- noise = noise * self.scheduler.init_noise_sigma
825
-
826
- if latents is None:
827
- latents = noise
828
- else:
829
- # Noise the latents to the required (first) timestep
830
- latents = timestep * noise + (1 - timestep) * latents
831
-
832
- return latents
833
-
834
- @staticmethod
835
- def classify_height_width_bin(
836
- height: int, width: int, ratios: dict
837
- ) -> Tuple[int, int]:
838
- """Returns binned height and width."""
839
- ar = float(height / width)
840
- closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
841
- default_hw = ratios[closest_ratio]
842
- return int(default_hw[0]), int(default_hw[1])
843
-
844
- @staticmethod
845
- def resize_and_crop_tensor(
846
- samples: torch.Tensor, new_width: int, new_height: int
847
- ) -> torch.Tensor:
848
- n_frames, orig_height, orig_width = samples.shape[-3:]
849
-
850
- # Check if resizing is needed
851
- if orig_height != new_height or orig_width != new_width:
852
- ratio = max(new_height / orig_height, new_width / orig_width)
853
- resized_width = int(orig_width * ratio)
854
- resized_height = int(orig_height * ratio)
855
-
856
- # Resize
857
- samples = LTXVideoPipeline.resize_tensor(
858
- samples, resized_height, resized_width
859
- )
860
-
861
- # Center Crop
862
- start_x = (resized_width - new_width) // 2
863
- end_x = start_x + new_width
864
- start_y = (resized_height - new_height) // 2
865
- end_y = start_y + new_height
866
- samples = samples[..., start_y:end_y, start_x:end_x]
867
-
868
- return samples
869
-
870
- @staticmethod
871
- def resize_tensor(media_items, height, width):
872
- n_frames = media_items.shape[2]
873
- if media_items.shape[-2:] != (height, width):
874
- media_items = rearrange(media_items, "b c n h w -> (b n) c h w")
875
- media_items = F.interpolate(
876
- media_items,
877
- size=(height, width),
878
- mode="bilinear",
879
- align_corners=False,
880
- )
881
- media_items = rearrange(media_items, "(b n) c h w -> b c n h w", n=n_frames)
882
- return media_items
883
-
884
- @torch.no_grad()
885
- def __call__(
886
- self,
887
- height: int,
888
- width: int,
889
- num_frames: int,
890
- frame_rate: float,
891
- prompt: Union[str, List[str]] = None,
892
- negative_prompt: str = "",
893
- num_inference_steps: int = 20,
894
- skip_initial_inference_steps: int = 0,
895
- skip_final_inference_steps: int = 0,
896
- timesteps: List[int] = None,
897
- guidance_scale: Union[float, List[float]] = 4.5,
898
- cfg_star_rescale: bool = False,
899
- skip_layer_strategy: Optional[SkipLayerStrategy] = None,
900
- skip_block_list: Optional[Union[List[List[int]], List[int]]] = None,
901
- stg_scale: Union[float, List[float]] = 1.0,
902
- rescaling_scale: Union[float, List[float]] = 0.7,
903
- guidance_timesteps: Optional[List[int]] = None,
904
- num_images_per_prompt: Optional[int] = 1,
905
- eta: float = 0.0,
906
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
907
- latents: Optional[torch.FloatTensor] = None,
908
- prompt_embeds: Optional[torch.FloatTensor] = None,
909
- prompt_attention_mask: Optional[torch.FloatTensor] = None,
910
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
911
- negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
912
- output_type: Optional[str] = "pil",
913
- return_dict: bool = True,
914
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
915
- conditioning_items: Optional[List[ConditioningItem]] = None,
916
- decode_timestep: Union[List[float], float] = 0.0,
917
- decode_noise_scale: Optional[List[float]] = None,
918
- mixed_precision: bool = False,
919
- offload_to_cpu: bool = False,
920
- enhance_prompt: bool = False,
921
- text_encoder_max_tokens: int = 256,
922
- stochastic_sampling: bool = False,
923
- media_items: Optional[torch.Tensor] = None,
924
- tone_map_compression_ratio: float = 0.0,
925
- **kwargs,
926
- ) -> Union[ImagePipelineOutput, Tuple]:
927
- """
928
- Function invoked when calling the pipeline for generation.
929
-
930
- Args:
931
- prompt (`str` or `List[str]`, *optional*):
932
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
933
- instead.
934
- negative_prompt (`str` or `List[str]`, *optional*):
935
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
936
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
937
- less than `1`).
938
- num_inference_steps (`int`, *optional*, defaults to 100):
939
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
940
- expense of slower inference. If `timesteps` is provided, this parameter is ignored.
941
- skip_initial_inference_steps (`int`, *optional*, defaults to 0):
942
- The number of initial timesteps to skip. After calculating the timesteps, this number of timesteps will
943
- be removed from the beginning of the timesteps list. Meaning the highest-timesteps values will not run.
944
- skip_final_inference_steps (`int`, *optional*, defaults to 0):
945
- The number of final timesteps to skip. After calculating the timesteps, this number of timesteps will
946
- be removed from the end of the timesteps list. Meaning the lowest-timesteps values will not run.
947
- timesteps (`List[int]`, *optional*):
948
- Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
949
- timesteps are used. Must be in descending order.
950
- guidance_scale (`float`, *optional*, defaults to 4.5):
951
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
952
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
953
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
954
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
955
- usually at the expense of lower image quality.
956
- cfg_star_rescale (`bool`, *optional*, defaults to `False`):
957
- If set to `True`, applies the CFG star rescale. Scales the negative prediction according to dot
958
- product between positive and negative.
959
- num_images_per_prompt (`int`, *optional*, defaults to 1):
960
- The number of images to generate per prompt.
961
- height (`int`, *optional*, defaults to self.unet.config.sample_size):
962
- The height in pixels of the generated image.
963
- width (`int`, *optional*, defaults to self.unet.config.sample_size):
964
- The width in pixels of the generated image.
965
- eta (`float`, *optional*, defaults to 0.0):
966
- Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
967
- [`schedulers.DDIMScheduler`], will be ignored for others.
968
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
969
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
970
- to make generation deterministic.
971
- latents (`torch.FloatTensor`, *optional*):
972
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
973
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
974
- tensor will ge generated by sampling using the supplied random `generator`.
975
- prompt_embeds (`torch.FloatTensor`, *optional*):
976
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
977
- provided, text embeddings will be generated from `prompt` input argument.
978
- prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
979
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
980
- Pre-generated negative text embeddings. This negative prompt should be "". If not
981
- provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
982
- negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
983
- Pre-generated attention mask for negative text embeddings.
984
- output_type (`str`, *optional*, defaults to `"pil"`):
985
- The output format of the generate image. Choose between
986
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
987
- return_dict (`bool`, *optional*, defaults to `True`):
988
- Whether to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
989
- callback_on_step_end (`Callable`, *optional*):
990
- A function that calls at the end of each denoising steps during the inference. The function is called
991
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
992
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
993
- `callback_on_step_end_tensor_inputs`.
994
- use_resolution_binning (`bool` defaults to `True`):
995
- If set to `True`, the requested height and width are first mapped to the closest resolutions using
996
- `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
997
- the requested resolution. Useful for generating non-square images.
998
- enhance_prompt (`bool`, *optional*, defaults to `False`):
999
- If set to `True`, the prompt is enhanced using a LLM model.
1000
- text_encoder_max_tokens (`int`, *optional*, defaults to `256`):
1001
- The maximum number of tokens to use for the text encoder.
1002
- stochastic_sampling (`bool`, *optional*, defaults to `False`):
1003
- If set to `True`, the sampling is stochastic. If set to `False`, the sampling is deterministic.
1004
- media_items ('torch.Tensor', *optional*):
1005
- The input media item used for image-to-image / video-to-video.
1006
- tone_map_compression_ratio: compression ratio for tone mapping, defaults to 0.0.
1007
- If set to 0.0, no tone mapping is applied. If set to 1.0 - full compression is applied.
1008
- Examples:
1009
- Returns:
1010
- [`~pipelines.ImagePipelineOutput`] or `tuple`:
1011
- If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
1012
- returned where the first element is a list with the generated images
1013
- """
1014
-
1015
- try:
1016
- print(f"[LTX]LATENTS {latents.shape}")
1017
- except Exception:
1018
- pass
1019
-
1020
-
1021
- if "mask_feature" in kwargs:
1022
- deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
1023
- #deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
1024
-
1025
- is_video = kwargs.get("is_video", False)
1026
- self.check_inputs(
1027
- prompt,
1028
- height,
1029
- width,
1030
- negative_prompt,
1031
- prompt_embeds,
1032
- negative_prompt_embeds,
1033
- prompt_attention_mask,
1034
- negative_prompt_attention_mask,
1035
- )
1036
-
1037
- # 2. Default height and width to transformer
1038
- if prompt is not None and isinstance(prompt, str):
1039
- batch_size = 1
1040
- elif prompt is not None and isinstance(prompt, list):
1041
- batch_size = len(prompt)
1042
- else:
1043
- batch_size = prompt_embeds.shape[0]
1044
-
1045
- device = self._execution_device
1046
-
1047
- self.video_scale_factor = self.video_scale_factor if is_video else 1
1048
- vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", True)
1049
- image_cond_noise_scale = kwargs.get("image_cond_noise_scale", 0.0)
1050
-
1051
- latent_height = height // self.vae_scale_factor
1052
- latent_width = width // self.vae_scale_factor
1053
- latent_num_frames = num_frames // self.video_scale_factor
1054
- if isinstance(self.vae, CausalVideoAutoencoder) and is_video:
1055
- latent_num_frames += 1
1056
- latent_shape = (
1057
- batch_size * num_images_per_prompt,
1058
- self.transformer.config.in_channels,
1059
- latent_num_frames,
1060
- latent_height,
1061
- latent_width,
1062
- )
1063
-
1064
- # Prepare the list of denoising time-steps
1065
-
1066
- retrieve_timesteps_kwargs = {}
1067
- if isinstance(self.scheduler, TimestepShifter):
1068
- retrieve_timesteps_kwargs["samples_shape"] = latent_shape
1069
-
1070
- assert (
1071
- skip_initial_inference_steps == 0
1072
- or latents is not None
1073
- or media_items is not None
1074
- ), (
1075
- f"skip_initial_inference_steps ({skip_initial_inference_steps}) is used for image-to-image/video-to-video - "
1076
- "media_item or latents should be provided."
1077
- )
1078
-
1079
- timesteps, num_inference_steps = retrieve_timesteps(
1080
- self.scheduler,
1081
- num_inference_steps,
1082
- device,
1083
- timesteps,
1084
- skip_initial_inference_steps=skip_initial_inference_steps,
1085
- skip_final_inference_steps=skip_final_inference_steps,
1086
- **retrieve_timesteps_kwargs,
1087
- )
1088
-
1089
- try:
1090
- print(f"[LTX2]LATENTS {latents.shape}")
1091
- except Exception:
1092
- pass
1093
-
1094
- if self.allowed_inference_steps is not None:
1095
- for timestep in [round(x, 4) for x in timesteps.tolist()]:
1096
- assert (
1097
- timestep in self.allowed_inference_steps
1098
- ), f"Invalid inference timestep {timestep}. Allowed timesteps are {self.allowed_inference_steps}."
1099
-
1100
- if guidance_timesteps:
1101
- guidance_mapping = []
1102
- for timestep in timesteps:
1103
- indices = [
1104
- i for i, val in enumerate(guidance_timesteps) if val <= timestep
1105
- ]
1106
- # assert len(indices) > 0, f"No guidance timestep found for {timestep}"
1107
- guidance_mapping.append(
1108
- indices[0] if len(indices) > 0 else (len(guidance_timesteps) - 1)
1109
- )
1110
-
1111
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
1112
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
1113
- # corresponds to doing no classifier free guidance.
1114
- if not isinstance(guidance_scale, List):
1115
- guidance_scale = [guidance_scale] * len(timesteps)
1116
- else:
1117
- guidance_scale = [
1118
- guidance_scale[guidance_mapping[i]] for i in range(len(timesteps))
1119
- ]
1120
-
1121
- if not isinstance(stg_scale, List):
1122
- stg_scale = [stg_scale] * len(timesteps)
1123
- else:
1124
- stg_scale = [stg_scale[guidance_mapping[i]] for i in range(len(timesteps))]
1125
-
1126
- if not isinstance(rescaling_scale, List):
1127
- rescaling_scale = [rescaling_scale] * len(timesteps)
1128
- else:
1129
- rescaling_scale = [
1130
- rescaling_scale[guidance_mapping[i]] for i in range(len(timesteps))
1131
- ]
1132
-
1133
- # Normalize skip_block_list to always be None or a list of lists matching timesteps
1134
- if skip_block_list is not None:
1135
- # Convert single list to list of lists if needed
1136
- if len(skip_block_list) == 0 or not isinstance(skip_block_list[0], list):
1137
- skip_block_list = [skip_block_list] * len(timesteps)
1138
- else:
1139
- new_skip_block_list = []
1140
- for i, timestep in enumerate(timesteps):
1141
- new_skip_block_list.append(skip_block_list[guidance_mapping[i]])
1142
- skip_block_list = new_skip_block_list
1143
-
1144
- if enhance_prompt:
1145
- self.prompt_enhancer_image_caption_model = (
1146
- self.prompt_enhancer_image_caption_model.to(self._execution_device)
1147
- )
1148
- self.prompt_enhancer_llm_model = self.prompt_enhancer_llm_model.to(
1149
- self._execution_device
1150
- )
1151
-
1152
- prompt = generate_cinematic_prompt(
1153
- self.prompt_enhancer_image_caption_model,
1154
- self.prompt_enhancer_image_caption_processor,
1155
- self.prompt_enhancer_llm_model,
1156
- self.prompt_enhancer_llm_tokenizer,
1157
- prompt,
1158
- conditioning_items,
1159
- max_new_tokens=text_encoder_max_tokens,
1160
- )
1161
-
1162
- try:
1163
- print(f"[LTX3]LATENTS {latents.shape}")
1164
- except Exception:
1165
- pass
1166
-
1167
- # 3. Encode input prompt
1168
- if self.text_encoder is not None:
1169
- self.text_encoder = self.text_encoder.to(self._execution_device)
1170
-
1171
- (
1172
- prompt_embeds,
1173
- prompt_attention_mask,
1174
- negative_prompt_embeds,
1175
- negative_prompt_attention_mask,
1176
- ) = self.encode_prompt(
1177
- prompt,
1178
- True,
1179
- negative_prompt=negative_prompt,
1180
- num_images_per_prompt=num_images_per_prompt,
1181
- device=device,
1182
- prompt_embeds=prompt_embeds,
1183
- negative_prompt_embeds=negative_prompt_embeds,
1184
- prompt_attention_mask=prompt_attention_mask,
1185
- negative_prompt_attention_mask=negative_prompt_attention_mask,
1186
- text_encoder_max_tokens=text_encoder_max_tokens,
1187
- )
1188
-
1189
- if offload_to_cpu and self.text_encoder is not None:
1190
- self.text_encoder = self.text_encoder.cpu()
1191
-
1192
- self.transformer = self.transformer.to(self._execution_device)
1193
-
1194
- prompt_embeds_batch = prompt_embeds
1195
- prompt_attention_mask_batch = prompt_attention_mask
1196
- negative_prompt_embeds = (
1197
- torch.zeros_like(prompt_embeds)
1198
- if negative_prompt_embeds is None
1199
- else negative_prompt_embeds
1200
- )
1201
- negative_prompt_attention_mask = (
1202
- torch.zeros_like(prompt_attention_mask)
1203
- if negative_prompt_attention_mask is None
1204
- else negative_prompt_attention_mask
1205
- )
1206
-
1207
- prompt_embeds_batch = torch.cat(
1208
- [negative_prompt_embeds, prompt_embeds, prompt_embeds], dim=0
1209
- )
1210
- prompt_attention_mask_batch = torch.cat(
1211
- [
1212
- negative_prompt_attention_mask,
1213
- prompt_attention_mask,
1214
- prompt_attention_mask,
1215
- ],
1216
- dim=0,
1217
- )
1218
- # 4. Prepare the initial latents using the provided media and conditioning items
1219
-
1220
- # Prepare the initial latents tensor, shape = (b, c, f, h, w)
1221
- latents = self.prepare_latents(
1222
- latents=latents,
1223
- media_items=media_items,
1224
- timestep=timesteps[0],
1225
- latent_shape=latent_shape,
1226
- dtype=prompt_embeds.dtype,
1227
- device=device,
1228
- generator=generator,
1229
- vae_per_channel_normalize=vae_per_channel_normalize,
1230
- )
1231
-
1232
- try:
1233
- print(f"[LTX4]LATENTS {latents.shape}")
1234
- original_shape = latents
1235
- except Exception:
1236
- pass
1237
-
1238
-
1239
-
1240
- # Update the latents with the conditioning items and patchify them into (b, n, c)
1241
- latents, pixel_coords, conditioning_mask, num_cond_latents = (
1242
- self.prepare_conditioning(
1243
- conditioning_items=conditioning_items,
1244
- init_latents=latents,
1245
- num_frames=num_frames,
1246
- height=height,
1247
- width=width,
1248
- vae_per_channel_normalize=vae_per_channel_normalize,
1249
- generator=generator,
1250
- )
1251
- )
1252
- init_latents = latents.clone() # Used for image_cond_noise_update
1253
-
1254
- try:
1255
- print(f"[LTXCond]conditioning_mask {conditioning_mask.shape}")
1256
- except Exception:
1257
- pass
1258
-
1259
- try:
1260
- print(f"[LTXCond]pixel_coords {pixel_coords.shape}")
1261
- except Exception:
1262
- pass
1263
-
1264
- try:
1265
- print(f"[LTXCond]pixel_coords {pixel_coords.shape}")
1266
- except Exception:
1267
- pass
1268
-
1269
-
1270
-
1271
-
1272
- # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1273
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1274
-
1275
-
1276
- try:
1277
- print(f"[LTX5]LATENTS {latents.shape}")
1278
- except Exception:
1279
- pass
1280
-
1281
- # 7. Denoising loop
1282
- num_warmup_steps = max(
1283
- len(timesteps) - num_inference_steps * self.scheduler.order, 0
1284
- )
1285
-
1286
- orig_conditioning_mask = conditioning_mask
1287
-
1288
- # Befor compiling this code please be aware:
1289
- # This code might generate different input shapes if some timesteps have no STG or CFG.
1290
- # This means that the codes might need to be compiled mutliple times.
1291
- # To avoid that, use the same STG and CFG values for all timesteps.
1292
-
1293
- with self.progress_bar(total=num_inference_steps) as progress_bar:
1294
- for i, t in enumerate(timesteps):
1295
- do_classifier_free_guidance = guidance_scale[i] > 1.0
1296
- do_spatio_temporal_guidance = stg_scale[i] > 0
1297
- do_rescaling = rescaling_scale[i] != 1.0
1298
-
1299
- num_conds = 1
1300
- if do_classifier_free_guidance:
1301
- num_conds += 1
1302
- if do_spatio_temporal_guidance:
1303
- num_conds += 1
1304
-
1305
- if do_classifier_free_guidance and do_spatio_temporal_guidance:
1306
- indices = slice(batch_size * 0, batch_size * 3)
1307
- elif do_classifier_free_guidance:
1308
- indices = slice(batch_size * 0, batch_size * 2)
1309
- elif do_spatio_temporal_guidance:
1310
- indices = slice(batch_size * 1, batch_size * 3)
1311
- else:
1312
- indices = slice(batch_size * 1, batch_size * 2)
1313
-
1314
- # Prepare skip layer masks
1315
- skip_layer_mask: Optional[torch.Tensor] = None
1316
- if do_spatio_temporal_guidance:
1317
- if skip_block_list is not None:
1318
- skip_layer_mask = self.transformer.create_skip_layer_mask(
1319
- batch_size, num_conds, num_conds - 1, skip_block_list[i]
1320
- )
1321
-
1322
- batch_pixel_coords = torch.cat([pixel_coords] * num_conds)
1323
- conditioning_mask = orig_conditioning_mask
1324
- if conditioning_mask is not None and is_video:
1325
- assert num_images_per_prompt == 1
1326
- conditioning_mask = torch.cat([conditioning_mask] * num_conds)
1327
- fractional_coords = batch_pixel_coords.to(torch.float32)
1328
- fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
1329
-
1330
- if conditioning_mask is not None and image_cond_noise_scale > 0.0:
1331
- latents = self.add_noise_to_image_conditioning_latents(
1332
- t,
1333
- init_latents,
1334
- latents,
1335
- image_cond_noise_scale,
1336
- orig_conditioning_mask,
1337
- generator,
1338
- )
1339
-
1340
- try:
1341
- print(f"[LTX6]LATENTS {latents.shape}")
1342
- self.spy.inspect(latents, "LTX6_After_Patchify", reference_shape_5d=original_shape)
1343
- except Exception:
1344
- pass
1345
-
1346
-
1347
-
1348
- latent_model_input = (
1349
- torch.cat([latents] * num_conds) if num_conds > 1 else latents
1350
- )
1351
- latent_model_input = self.scheduler.scale_model_input(
1352
- latent_model_input, t
1353
- )
1354
-
1355
- try:
1356
- print(f"[LTX7]LATENTS {latent_model_input.shape}")
1357
- self.spy.inspect(latents, "LTX7_After_Patchify", reference_shape_5d=original_shape)
1358
- except Exception:
1359
- pass
1360
-
1361
- current_timestep = t
1362
- if not torch.is_tensor(current_timestep):
1363
- # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
1364
- # This would be a good case for the `match` statement (Python 3.10+)
1365
- is_mps = latent_model_input.device.type == "mps"
1366
- if isinstance(current_timestep, float):
1367
- dtype = torch.float32 if is_mps else torch.float64
1368
- else:
1369
- dtype = torch.int32 if is_mps else torch.int64
1370
- current_timestep = torch.tensor(
1371
- [current_timestep],
1372
- dtype=dtype,
1373
- device=latent_model_input.device,
1374
- )
1375
- elif len(current_timestep.shape) == 0:
1376
- current_timestep = current_timestep[None].to(
1377
- latent_model_input.device
1378
- )
1379
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
1380
- current_timestep = current_timestep.expand(
1381
- latent_model_input.shape[0]
1382
- ).unsqueeze(-1)
1383
-
1384
- if conditioning_mask is not None:
1385
- # Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
1386
- # and will start to be denoised when the current timestep is lower than their conditioning timestep.
1387
- current_timestep = torch.min(
1388
- current_timestep, 1.0 - conditioning_mask
1389
- )
1390
-
1391
- # Choose the appropriate context manager based on `mixed_precision`
1392
- if mixed_precision:
1393
- context_manager = torch.autocast(device.type, dtype=torch.bfloat16)
1394
- else:
1395
- context_manager = nullcontext() # Dummy context manager
1396
-
1397
- # predict noise model_output
1398
- with context_manager:
1399
- noise_pred = self.transformer(
1400
- latent_model_input.to(self.transformer.dtype),
1401
- indices_grid=fractional_coords,
1402
- encoder_hidden_states=prompt_embeds_batch[indices].to(
1403
- self.transformer.dtype
1404
- ),
1405
- encoder_attention_mask=prompt_attention_mask_batch[indices],
1406
- timestep=current_timestep,
1407
- skip_layer_mask=skip_layer_mask,
1408
- skip_layer_strategy=skip_layer_strategy,
1409
- return_dict=False,
1410
- )[0]
1411
-
1412
- # perform guidance
1413
- if do_spatio_temporal_guidance:
1414
- noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(
1415
- num_conds
1416
- )[-2:]
1417
- if do_classifier_free_guidance:
1418
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_conds)[:2]
1419
-
1420
- if cfg_star_rescale:
1421
- # Rescales the unconditional noise prediction using the projection of the conditional prediction onto it:
1422
- # α = (⟨ε_text, ε_uncond⟩ / ||ε_uncond||²), then ε_uncond ← α * ε_uncond
1423
- # where ε_text is the conditional noise prediction and ε_uncond is the unconditional one.
1424
- positive_flat = noise_pred_text.view(batch_size, -1)
1425
- negative_flat = noise_pred_uncond.view(batch_size, -1)
1426
- dot_product = torch.sum(
1427
- positive_flat * negative_flat, dim=1, keepdim=True
1428
- )
1429
- squared_norm = (
1430
- torch.sum(negative_flat**2, dim=1, keepdim=True) + 1e-8
1431
- )
1432
- alpha = dot_product / squared_norm
1433
- noise_pred_uncond = alpha * noise_pred_uncond
1434
-
1435
- noise_pred = noise_pred_uncond + guidance_scale[i] * (
1436
- noise_pred_text - noise_pred_uncond
1437
- )
1438
- elif do_spatio_temporal_guidance:
1439
- noise_pred = noise_pred_text
1440
- if do_spatio_temporal_guidance:
1441
- noise_pred = noise_pred + stg_scale[i] * (
1442
- noise_pred_text - noise_pred_text_perturb
1443
- )
1444
- if do_rescaling and stg_scale[i] > 0.0:
1445
- noise_pred_text_std = noise_pred_text.view(batch_size, -1).std(
1446
- dim=1, keepdim=True
1447
- )
1448
- noise_pred_std = noise_pred.view(batch_size, -1).std(
1449
- dim=1, keepdim=True
1450
- )
1451
-
1452
- factor = noise_pred_text_std / noise_pred_std
1453
- factor = rescaling_scale[i] * factor + (1 - rescaling_scale[i])
1454
-
1455
- noise_pred = noise_pred * factor.view(batch_size, 1, 1)
1456
-
1457
- current_timestep = current_timestep[:1]
1458
- # learned sigma
1459
- if (
1460
- self.transformer.config.out_channels // 2
1461
- == self.transformer.config.in_channels
1462
- ):
1463
- noise_pred = noise_pred.chunk(2, dim=1)[0]
1464
-
1465
- # compute previous image: x_t -> x_t-1
1466
- latents = self.denoising_step(
1467
- latents,
1468
- noise_pred,
1469
- current_timestep,
1470
- orig_conditioning_mask,
1471
- t,
1472
- extra_step_kwargs,
1473
- stochastic_sampling=stochastic_sampling,
1474
- )
1475
-
1476
- try:
1477
- print(f"[LTX8]LATENTS {latents.shape}")
1478
- self.spy.inspect(latents, "LTX8_After_Patchify", reference_shape_5d=original_shape)
1479
- except Exception:
1480
- pass
1481
-
1482
- # call the callback, if provided
1483
- if i == len(timesteps) - 1 or (
1484
- (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
1485
- ):
1486
- progress_bar.update()
1487
-
1488
- if callback_on_step_end is not None:
1489
- callback_on_step_end(self, i, t, {})
1490
-
1491
-
1492
-
1493
- try:
1494
- print(f"[LTX9]LATENTS {latents.shape}")
1495
- self.spy.inspect(latents, "LTX9_After_Patchify", reference_shape_5d=original_shape)
1496
-
1497
- except Exception:
1498
- pass
1499
-
1500
-
1501
- if offload_to_cpu:
1502
- self.transformer = self.transformer.cpu()
1503
- if self._execution_device == "cuda":
1504
- torch.cuda.empty_cache()
1505
-
1506
- # Remove the added conditioning latents
1507
- latents = latents[:, num_cond_latents:]
1508
-
1509
-
1510
- try:
1511
- print(f"[LTX10]LATENTS {latents.shape}")
1512
- self.spy.inspect(latents, "LTX10_After_Patchify", reference_shape_5d=original_shape)
1513
- except Exception:
1514
- pass
1515
-
1516
- latents = self.patchifier.unpatchify(
1517
- latents=latents,
1518
- output_height=latent_height,
1519
- output_width=latent_width,
1520
- out_channels=self.transformer.in_channels
1521
- // math.prod(self.patchifier.patch_size),
1522
- )
1523
- if output_type != "latent":
1524
- if self.vae.decoder.timestep_conditioning:
1525
- noise = torch.randn_like(latents)
1526
- if not isinstance(decode_timestep, list):
1527
- decode_timestep = [decode_timestep] * latents.shape[0]
1528
- if decode_noise_scale is None:
1529
- decode_noise_scale = decode_timestep
1530
- elif not isinstance(decode_noise_scale, list):
1531
- decode_noise_scale = [decode_noise_scale] * latents.shape[0]
1532
-
1533
- decode_timestep = torch.tensor(decode_timestep).to(latents.device)
1534
- decode_noise_scale = torch.tensor(decode_noise_scale).to(
1535
- latents.device
1536
- )[:, None, None, None, None]
1537
- latents = (
1538
- latents * (1 - decode_noise_scale) + noise * decode_noise_scale
1539
- )
1540
- else:
1541
- decode_timestep = None
1542
- latents = self.tone_map_latents(latents, tone_map_compression_ratio)
1543
- image = vae_decode(
1544
- latents,
1545
- self.vae,
1546
- is_video,
1547
- vae_per_channel_normalize=kwargs["vae_per_channel_normalize"],
1548
- timestep=decode_timestep,
1549
- )
1550
-
1551
- try:
1552
- print(f"[LTX11]LATENTS {latents.shape}")
1553
- except Exception:
1554
- pass
1555
-
1556
- image = self.image_processor.postprocess(image, output_type=output_type)
1557
-
1558
- else:
1559
- image = latents
1560
-
1561
- # Offload all models
1562
- self.maybe_free_model_hooks()
1563
-
1564
- if not return_dict:
1565
- return (image,)
1566
-
1567
- return ImagePipelineOutput(images=image)
1568
-
1569
- def denoising_step(
1570
- self,
1571
- latents: torch.Tensor,
1572
- noise_pred: torch.Tensor,
1573
- current_timestep: torch.Tensor,
1574
- conditioning_mask: torch.Tensor,
1575
- t: float,
1576
- extra_step_kwargs,
1577
- t_eps=1e-6,
1578
- stochastic_sampling=False,
1579
- ):
1580
- """
1581
- Perform the denoising step for the required tokens, based on the current timestep and
1582
- conditioning mask:
1583
- Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
1584
- and will start to be denoised when the current timestep is equal or lower than their
1585
- conditioning timestep.
1586
- (hard-conditioning latents with conditioning_mask = 1.0 are never denoised)
1587
- """
1588
- # Denoise the latents using the scheduler
1589
- denoised_latents = self.scheduler.step(
1590
- noise_pred,
1591
- t if current_timestep is None else current_timestep,
1592
- latents,
1593
- **extra_step_kwargs,
1594
- return_dict=False,
1595
- stochastic_sampling=stochastic_sampling,
1596
- )[0]
1597
-
1598
- if conditioning_mask is None:
1599
- return denoised_latents
1600
-
1601
- tokens_to_denoise_mask = (t - t_eps < (1.0 - conditioning_mask)).unsqueeze(-1)
1602
- return torch.where(tokens_to_denoise_mask, denoised_latents, latents)
1603
-
1604
- def prepare_conditioning(
1605
- self,
1606
- conditioning_items: Optional[List[ConditioningItem]],
1607
- init_latents: torch.Tensor,
1608
- num_frames: int,
1609
- height: int,
1610
- width: int,
1611
- vae_per_channel_normalize: bool = False,
1612
- generator=None,
1613
- ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
1614
- """
1615
- Prepare conditioning tokens based on the provided conditioning items.
1616
-
1617
- This method encodes provided conditioning items (video frames or single frames) into latents
1618
- and integrates them with the initial latent tensor. It also calculates corresponding pixel
1619
- coordinates, a mask indicating the influence of conditioning latents, and the total number of
1620
- conditioning latents.
1621
-
1622
- Args:
1623
- conditioning_items (Optional[List[ConditioningItem]]): A list of ConditioningItem objects.
1624
- init_latents (torch.Tensor): The initial latent tensor of shape (b, c, f_l, h_l, w_l), where
1625
- `f_l` is the number of latent frames, and `h_l` and `w_l` are latent spatial dimensions.
1626
- num_frames, height, width: The dimensions of the generated video.
1627
- vae_per_channel_normalize (bool, optional): Whether to normalize channels during VAE encoding.
1628
- Defaults to `False`.
1629
- generator: The random generator
1630
-
1631
- Returns:
1632
- Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
1633
- - `init_latents` (torch.Tensor): The updated latent tensor including conditioning latents,
1634
- patchified into (b, n, c) shape.
1635
- - `init_pixel_coords` (torch.Tensor): The pixel coordinates corresponding to the updated
1636
- latent tensor.
1637
- - `conditioning_mask` (torch.Tensor): A mask indicating the conditioning-strength of each
1638
- latent token.
1639
- - `num_cond_latents` (int): The total number of latent tokens added from conditioning items.
1640
-
1641
- Raises:
1642
- AssertionError: If input shapes, dimensions, or conditions for applying conditioning are invalid.
1643
- """
1644
- assert isinstance(self.vae, CausalVideoAutoencoder)
1645
-
1646
- if conditioning_items:
1647
- batch_size, _, num_latent_frames = init_latents.shape[:3]
1648
-
1649
- init_conditioning_mask = torch.zeros(
1650
- init_latents[:, 0, :, :, :].shape,
1651
- dtype=torch.float32,
1652
- device=init_latents.device,
1653
- )
1654
-
1655
- extra_conditioning_latents = []
1656
- extra_conditioning_pixel_coords = []
1657
- extra_conditioning_mask = []
1658
- extra_conditioning_num_latents = 0 # Number of extra conditioning latents added (should be removed before decoding)
1659
-
1660
- # Process each conditioning item
1661
- for conditioning_item in conditioning_items:
1662
- conditioning_item = self._resize_conditioning_item(
1663
- conditioning_item, height, width
1664
- )
1665
- media_item = conditioning_item.media_item
1666
- media_frame_number = conditioning_item.media_frame_number
1667
- strength = conditioning_item.conditioning_strength
1668
- assert media_item.ndim == 5 # (b, c, f, h, w)
1669
- b, c, n_frames, h, w = media_item.shape
1670
- assert (
1671
- height == h and width == w
1672
- ) or media_frame_number == 0, f"Dimensions do not match: {height}x{width} != {h}x{w} - allowed only when media_frame_number == 0"
1673
- assert n_frames % 8 == 1
1674
- assert (
1675
- media_frame_number >= 0
1676
- and media_frame_number + n_frames <= num_frames
1677
- )
1678
-
1679
- # Encode the provided conditioning media item
1680
- media_item_latents = vae_encode(
1681
- media_item.to(dtype=self.vae.dtype, device=self.vae.device),
1682
- self.vae,
1683
- vae_per_channel_normalize=vae_per_channel_normalize,
1684
- ).to(dtype=init_latents.dtype)
1685
-
1686
- # Handle the different conditioning cases
1687
- if media_frame_number == 0:
1688
- # Get the target spatial position of the latent conditioning item
1689
- media_item_latents, l_x, l_y = self._get_latent_spatial_position(
1690
- media_item_latents,
1691
- conditioning_item,
1692
- height,
1693
- width,
1694
- strip_latent_border=True,
1695
- )
1696
- b, c_l, f_l, h_l, w_l = media_item_latents.shape
1697
-
1698
- # First frame or sequence - just update the initial noise latents and the mask
1699
- init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l] = (
1700
- torch.lerp(
1701
- init_latents[:, :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l],
1702
- media_item_latents,
1703
- strength,
1704
- )
1705
- )
1706
- init_conditioning_mask[
1707
- :, :f_l, l_y : l_y + h_l, l_x : l_x + w_l
1708
- ] = strength
1709
- else:
1710
- # Non-first frame or sequence
1711
- if n_frames > 1:
1712
- # Handle non-first sequence.
1713
- # Encoded latents are either fully consumed, or the prefix is handled separately below.
1714
- (
1715
- init_latents,
1716
- init_conditioning_mask,
1717
- media_item_latents,
1718
- ) = self._handle_non_first_conditioning_sequence(
1719
- init_latents,
1720
- init_conditioning_mask,
1721
- media_item_latents,
1722
- media_frame_number,
1723
- strength,
1724
- )
1725
-
1726
- # Single frame or sequence-prefix latents
1727
- if media_item_latents is not None:
1728
- noise = randn_tensor(
1729
- media_item_latents.shape,
1730
- generator=generator,
1731
- device=media_item_latents.device,
1732
- dtype=media_item_latents.dtype,
1733
- )
1734
-
1735
- media_item_latents = torch.lerp(
1736
- noise, media_item_latents, strength
1737
- )
1738
-
1739
- # Patchify the extra conditioning latents and calculate their pixel coordinates
1740
- media_item_latents, latent_coords = self.patchifier.patchify(
1741
- latents=media_item_latents
1742
- )
1743
- pixel_coords = latent_to_pixel_coords(
1744
- latent_coords,
1745
- self.vae,
1746
- causal_fix=self.transformer.config.causal_temporal_positioning,
1747
- )
1748
-
1749
- # Update the frame numbers to match the target frame number
1750
- pixel_coords[:, 0] += media_frame_number
1751
- extra_conditioning_num_latents += media_item_latents.shape[1]
1752
-
1753
- conditioning_mask = torch.full(
1754
- media_item_latents.shape[:2],
1755
- strength,
1756
- dtype=torch.float32,
1757
- device=init_latents.device,
1758
- )
1759
-
1760
- extra_conditioning_latents.append(media_item_latents)
1761
- extra_conditioning_pixel_coords.append(pixel_coords)
1762
- extra_conditioning_mask.append(conditioning_mask)
1763
-
1764
- # Patchify the updated latents and calculate their pixel coordinates
1765
- init_latents, init_latent_coords = self.patchifier.patchify(
1766
- latents=init_latents
1767
- )
1768
- init_pixel_coords = latent_to_pixel_coords(
1769
- init_latent_coords,
1770
- self.vae,
1771
- causal_fix=self.transformer.config.causal_temporal_positioning,
1772
- )
1773
-
1774
- if not conditioning_items:
1775
- return init_latents, init_pixel_coords, None, 0
1776
-
1777
- init_conditioning_mask, _ = self.patchifier.patchify(
1778
- latents=init_conditioning_mask.unsqueeze(1)
1779
- )
1780
- init_conditioning_mask = init_conditioning_mask.squeeze(-1)
1781
-
1782
- if extra_conditioning_latents:
1783
- # Stack the extra conditioning latents, pixel coordinates and mask
1784
- init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
1785
- init_pixel_coords = torch.cat(
1786
- [*extra_conditioning_pixel_coords, init_pixel_coords], dim=2
1787
- )
1788
- init_conditioning_mask = torch.cat(
1789
- [*extra_conditioning_mask, init_conditioning_mask], dim=1
1790
- )
1791
-
1792
- if self.transformer.use_tpu_flash_attention:
1793
- # When flash attention is used, keep the original number of tokens by removing
1794
- # tokens from the end.
1795
- init_latents = init_latents[:, :-extra_conditioning_num_latents]
1796
- init_pixel_coords = init_pixel_coords[
1797
- :, :, :-extra_conditioning_num_latents
1798
- ]
1799
- init_conditioning_mask = init_conditioning_mask[
1800
- :, :-extra_conditioning_num_latents
1801
- ]
1802
-
1803
- return (
1804
- init_latents,
1805
- init_pixel_coords,
1806
- init_conditioning_mask,
1807
- extra_conditioning_num_latents,
1808
- )
1809
-
1810
- @staticmethod
1811
- def _resize_conditioning_item(
1812
- conditioning_item: ConditioningItem,
1813
- height: int,
1814
- width: int,
1815
- ):
1816
- if conditioning_item.media_x or conditioning_item.media_y:
1817
- raise ValueError(
1818
- "Provide media_item in the target size for spatial conditioning."
1819
- )
1820
- new_conditioning_item = copy.copy(conditioning_item)
1821
- new_conditioning_item.media_item = LTXVideoPipeline.resize_tensor(
1822
- conditioning_item.media_item, height, width
1823
- )
1824
- return new_conditioning_item
1825
-
1826
- def _get_latent_spatial_position(
1827
- self,
1828
- latents: torch.Tensor,
1829
- conditioning_item: ConditioningItem,
1830
- height: int,
1831
- width: int,
1832
- strip_latent_border,
1833
- ):
1834
- """
1835
- Get the spatial position of the conditioning item in the latent space.
1836
- If requested, strip the conditioning latent borders that do not align with target borders.
1837
- (border latents look different then other latents and might confuse the model)
1838
- """
1839
- scale = self.vae_scale_factor
1840
- h, w = conditioning_item.media_item.shape[-2:]
1841
- assert (
1842
- h <= height and w <= width
1843
- ), f"Conditioning item size {h}x{w} is larger than target size {height}x{width}"
1844
- assert h % scale == 0 and w % scale == 0
1845
-
1846
- # Compute the start and end spatial positions of the media item
1847
- x_start, y_start = conditioning_item.media_x, conditioning_item.media_y
1848
- x_start = (width - w) // 2 if x_start is None else x_start
1849
- y_start = (height - h) // 2 if y_start is None else y_start
1850
- x_end, y_end = x_start + w, y_start + h
1851
- assert (
1852
- x_end <= width and y_end <= height
1853
- ), f"Conditioning item {x_start}:{x_end}x{y_start}:{y_end} is out of bounds for target size {width}x{height}"
1854
-
1855
- if strip_latent_border:
1856
- # Strip one latent from left/right and/or top/bottom, update x, y accordingly
1857
- if x_start > 0:
1858
- x_start += scale
1859
- latents = latents[:, :, :, :, 1:]
1860
-
1861
- if y_start > 0:
1862
- y_start += scale
1863
- latents = latents[:, :, :, 1:, :]
1864
-
1865
- if x_end < width:
1866
- latents = latents[:, :, :, :, :-1]
1867
-
1868
- if y_end < height:
1869
- latents = latents[:, :, :, :-1, :]
1870
-
1871
- return latents, x_start // scale, y_start // scale
1872
-
1873
- @staticmethod
1874
- def _handle_non_first_conditioning_sequence(
1875
- init_latents: torch.Tensor,
1876
- init_conditioning_mask: torch.Tensor,
1877
- latents: torch.Tensor,
1878
- media_frame_number: int,
1879
- strength: float,
1880
- num_prefix_latent_frames: int = 2,
1881
- prefix_latents_mode: str = "concat",
1882
- prefix_soft_conditioning_strength: float = 0.15,
1883
- ):
1884
- """
1885
- Special handling for a conditioning sequence that does not start on the first frame.
1886
- The special handling is required to allow a short encoded video to be used as middle
1887
- (or last) sequence in a longer video.
1888
- Args:
1889
- init_latents (torch.Tensor): The initial noise latents to be updated.
1890
- init_conditioning_mask (torch.Tensor): The initial conditioning mask to be updated.
1891
- latents (torch.Tensor): The encoded conditioning item.
1892
- media_frame_number (int): The target frame number of the first frame in the conditioning sequence.
1893
- strength (float): The conditioning strength for the conditioning latents.
1894
- num_prefix_latent_frames (int, optional): The length of the sequence prefix, to be handled
1895
- separately. Defaults to 2.
1896
- prefix_latents_mode (str, optional): Special treatment for prefix (boundary) latents.
1897
- - "drop": Drop the prefix latents.
1898
- - "soft": Use the prefix latents, but with soft-conditioning
1899
- - "concat": Add the prefix latents as extra tokens (like single frames)
1900
- prefix_soft_conditioning_strength (float, optional): The strength of the soft-conditioning for
1901
- the prefix latents, relevant if `prefix_latents_mode` is "soft". Defaults to 0.1.
1902
-
1903
- """
1904
- f_l = latents.shape[2]
1905
- f_l_p = num_prefix_latent_frames
1906
- assert f_l >= f_l_p
1907
- assert media_frame_number % 8 == 0
1908
- if f_l > f_l_p:
1909
- # Insert the conditioning latents **excluding the prefix** into the sequence
1910
- f_l_start = media_frame_number // 8 + f_l_p
1911
- f_l_end = f_l_start + f_l - f_l_p
1912
- init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
1913
- init_latents[:, :, f_l_start:f_l_end],
1914
- latents[:, :, f_l_p:],
1915
- strength,
1916
- )
1917
- # Mark these latent frames as conditioning latents
1918
- init_conditioning_mask[:, f_l_start:f_l_end] = strength
1919
-
1920
- # Handle the prefix-latents
1921
- if prefix_latents_mode == "soft":
1922
- if f_l_p > 1:
1923
- # Drop the first (single-frame) latent and soft-condition the remaining prefix
1924
- f_l_start = media_frame_number // 8 + 1
1925
- f_l_end = f_l_start + f_l_p - 1
1926
- strength = min(prefix_soft_conditioning_strength, strength)
1927
- init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
1928
- init_latents[:, :, f_l_start:f_l_end],
1929
- latents[:, :, 1:f_l_p],
1930
- strength,
1931
- )
1932
- # Mark these latent frames as conditioning latents
1933
- init_conditioning_mask[:, f_l_start:f_l_end] = strength
1934
- latents = None # No more latents to handle
1935
- elif prefix_latents_mode == "drop":
1936
- # Drop the prefix latents
1937
- latents = None
1938
- elif prefix_latents_mode == "concat":
1939
- # Pass-on the prefix latents to be handled as extra conditioning frames
1940
- latents = latents[:, :, :f_l_p]
1941
- else:
1942
- raise ValueError(f"Invalid prefix_latents_mode: {prefix_latents_mode}")
1943
- return (
1944
- init_latents,
1945
- init_conditioning_mask,
1946
- latents,
1947
- )
1948
-
1949
- def trim_conditioning_sequence(
1950
- self, start_frame: int, sequence_num_frames: int, target_num_frames: int
1951
- ):
1952
- """
1953
- Trim a conditioning sequence to the allowed number of frames.
1954
-
1955
- Args:
1956
- start_frame (int): The target frame number of the first frame in the sequence.
1957
- sequence_num_frames (int): The number of frames in the sequence.
1958
- target_num_frames (int): The target number of frames in the generated video.
1959
-
1960
- Returns:
1961
- int: updated sequence length
1962
- """
1963
- scale_factor = self.video_scale_factor
1964
- num_frames = min(sequence_num_frames, target_num_frames - start_frame)
1965
- # Trim down to a multiple of temporal_scale_factor frames plus 1
1966
- num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
1967
- return num_frames
1968
-
1969
- @staticmethod
1970
- def tone_map_latents(
1971
- latents: torch.Tensor,
1972
- compression: float,
1973
- ) -> torch.Tensor:
1974
- """
1975
- Applies a non-linear tone-mapping function to latent values to reduce their dynamic range
1976
- in a perceptually smooth way using a sigmoid-based compression.
1977
-
1978
- This is useful for regularizing high-variance latents or for conditioning outputs
1979
- during generation, especially when controlling dynamic behavior with a `compression` factor.
1980
-
1981
- Parameters:
1982
- ----------
1983
- latents : torch.Tensor
1984
- Input latent tensor with arbitrary shape. Expected to be roughly in [-1, 1] or [0, 1] range.
1985
- compression : float
1986
- Compression strength in the range [0, 1].
1987
- - 0.0: No tone-mapping (identity transform)
1988
- - 1.0: Full compression effect
1989
-
1990
- Returns:
1991
- -------
1992
- torch.Tensor
1993
- The tone-mapped latent tensor of the same shape as input.
1994
- """
1995
- if not (0 <= compression <= 1):
1996
- raise ValueError("Compression must be in the range [0, 1]")
1997
-
1998
- # Remap [0-1] to [0-0.75] and apply sigmoid compression in one shot
1999
- scale_factor = compression * 0.75
2000
- abs_latents = torch.abs(latents)
2001
-
2002
- # Sigmoid compression: sigmoid shifts large values toward 0.2, small values stay ~1.0
2003
- # When scale_factor=0, sigmoid term vanishes, when scale_factor=0.75, full effect
2004
- sigmoid_term = torch.sigmoid(4.0 * scale_factor * (abs_latents - 1.0))
2005
- scales = 1.0 - 0.8 * scale_factor * sigmoid_term
2006
-
2007
- filtered = latents * scales
2008
- return filtered
2009
-
2010
-
2011
- def adain_filter_latent(
2012
- latents: torch.Tensor, reference_latents: torch.Tensor, factor=1.0
2013
- ):
2014
- """
2015
- Applies Adaptive Instance Normalization (AdaIN) to a latent tensor based on
2016
- statistics from a reference latent tensor.
2017
-
2018
- Args:
2019
- latent (torch.Tensor): Input latents to normalize
2020
- reference_latent (torch.Tensor): The reference latents providing style statistics.
2021
- factor (float): Blending factor between original and transformed latent.
2022
- Range: -10.0 to 10.0, Default: 1.0
2023
-
2024
- Returns:
2025
- torch.Tensor: The transformed latent tensor
2026
- """
2027
- result = latents.clone()
2028
-
2029
- for i in range(latents.size(0)):
2030
- for c in range(latents.size(1)):
2031
- r_sd, r_mean = torch.std_mean(
2032
- reference_latents[i, c], dim=None
2033
- ) # index by original dim order
2034
- i_sd, i_mean = torch.std_mean(result[i, c], dim=None)
2035
-
2036
- result[i, c] = ((result[i, c] - i_mean) / i_sd) * r_sd + r_mean
2037
-
2038
- result = torch.lerp(latents, result, factor)
2039
- return result
2040
-
2041
-
2042
- class LTXMultiScalePipeline:
2043
- def _upsample_latents(
2044
- self, latest_upsampler: LatentUpsampler, latents: torch.Tensor
2045
- ):
2046
- assert latents.device == latest_upsampler.device
2047
-
2048
- latents = un_normalize_latents(
2049
- latents, self.vae, vae_per_channel_normalize=True
2050
- )
2051
- upsampled_latents = latest_upsampler(latents)
2052
- upsampled_latents = normalize_latents(
2053
- upsampled_latents, self.vae, vae_per_channel_normalize=True
2054
- )
2055
- return upsampled_latents
2056
-
2057
- def __init__(
2058
- self, video_pipeline: LTXVideoPipeline, latent_upsampler: LatentUpsampler
2059
- ):
2060
- self.video_pipeline = video_pipeline
2061
- self.vae = video_pipeline.vae
2062
- self.latent_upsampler = latent_upsampler
2063
-
2064
- def __call__(
2065
- self,
2066
- downscale_factor: float,
2067
- first_pass: dict,
2068
- second_pass: dict,
2069
- *args: Any,
2070
- **kwargs: Any,
2071
- ) -> Any:
2072
- original_kwargs = kwargs.copy()
2073
- original_output_type = kwargs["output_type"]
2074
- original_width = kwargs["width"]
2075
- original_height = kwargs["height"]
2076
-
2077
- x_width = int(kwargs["width"] * downscale_factor)
2078
- downscaled_width = x_width - (x_width % self.video_pipeline.vae_scale_factor)
2079
- x_height = int(kwargs["height"] * downscale_factor)
2080
- downscaled_height = x_height - (x_height % self.video_pipeline.vae_scale_factor)
2081
-
2082
- kwargs["output_type"] = "latent"
2083
- kwargs["width"] = downscaled_width
2084
- kwargs["height"] = downscaled_height
2085
- kwargs.update(**first_pass)
2086
- result = self.video_pipeline(*args, **kwargs)
2087
- latents = result.images
2088
-
2089
- upsampled_latents = self._upsample_latents(self.latent_upsampler, latents)
2090
- upsampled_latents = adain_filter_latent(
2091
- latents=upsampled_latents, reference_latents=latents
2092
- )
2093
-
2094
- kwargs = original_kwargs
2095
-
2096
- kwargs["latents"] = upsampled_latents
2097
- kwargs["output_type"] = original_output_type
2098
- kwargs["width"] = downscaled_width * 2
2099
- kwargs["height"] = downscaled_height * 2
2100
- kwargs.update(**second_pass)
2101
-
2102
- result = self.video_pipeline(*args, **kwargs)
2103
- if original_output_type != "latent":
2104
- num_frames = result.images.shape[2]
2105
- videos = rearrange(result.images, "b c f h w -> (b f) c h w")
2106
-
2107
- videos = F.interpolate(
2108
- videos,
2109
- size=(original_height, original_width),
2110
- mode="bilinear",
2111
- align_corners=False,
2112
- )
2113
- videos = rearrange(videos, "(b f) c h w -> b c f h w", f=num_frames)
2114
- result.images = videos
2115
-
2116
- return result