Spaces:
Paused
Paused
Update api/ltx_server_refactored.py
Browse files- api/ltx_server_refactored.py +199 -58
api/ltx_server_refactored.py
CHANGED
|
@@ -19,7 +19,6 @@ import subprocess
|
|
| 19 |
from pathlib import Path
|
| 20 |
from typing import List, Dict, Optional, Tuple, Union
|
| 21 |
|
| 22 |
-
|
| 23 |
# --- Configurações de Logging e Avisos ---
|
| 24 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 25 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
|
@@ -92,12 +91,55 @@ from ltx_video.schedulers.rf import RectifiedFlowScheduler
|
|
| 92 |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 93 |
import ltx_video.pipelines.crf_compressor as crf_compressor
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
def create_latent_upsampler(latent_upsampler_model_path: str, device: str):
|
| 103 |
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
|
|
@@ -174,22 +216,6 @@ def create_ltx_video_pipeline(
|
|
| 174 |
transformer = transformer.to(torch.bfloat16)
|
| 175 |
text_encoder = text_encoder.to(torch.bfloat16)
|
| 176 |
|
| 177 |
-
|
| 178 |
-
# --- Ajuste global de precisão coerente ---
|
| 179 |
-
if precision in ["float8_e4m3fn", "bfloat16"]:
|
| 180 |
-
dtype_target = torch.bfloat16
|
| 181 |
-
elif precision == "mixed_precision":
|
| 182 |
-
dtype_target = torch.float16
|
| 183 |
-
else:
|
| 184 |
-
dtype_target = torch.float32
|
| 185 |
-
|
| 186 |
-
for m in [vae, transformer, text_encoder]:
|
| 187 |
-
m.to(dtype_target)
|
| 188 |
-
|
| 189 |
-
# garante coerência geral da pipeline
|
| 190 |
-
pipeline_dtype = dtype_target
|
| 191 |
-
|
| 192 |
-
|
| 193 |
# Use submodels for the pipeline
|
| 194 |
submodel_dict = {
|
| 195 |
"transformer": transformer,
|
|
@@ -206,14 +232,38 @@ def create_ltx_video_pipeline(
|
|
| 206 |
}
|
| 207 |
|
| 208 |
pipeline = LTXVideoPipeline(**submodel_dict)
|
| 209 |
-
|
| 210 |
pipeline = pipeline.to(device)
|
| 211 |
-
pipeline.to(dtype=pipeline_dtype)
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
return pipeline
|
| 216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
# ==============================================================================
|
| 219 |
# 3. CLASSE PRINCIPAL DO SERVIÇO DE VÍDEO
|
|
@@ -230,7 +280,7 @@ class VideoService:
|
|
| 230 |
t0 = time.perf_counter()
|
| 231 |
print("[INFO] Inicializando VideoService...")
|
| 232 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 233 |
-
self.config = self._load_config("ltxv-13b-0.9.8-
|
| 234 |
|
| 235 |
self.pipeline, self.latent_upsampler = self._load_models_from_hub()
|
| 236 |
self._move_models_to_device()
|
|
@@ -241,10 +291,6 @@ class VideoService:
|
|
| 241 |
device=self.device,
|
| 242 |
autocast_dtype=self.runtime_autocast_dtype
|
| 243 |
)
|
| 244 |
-
|
| 245 |
-
self._apply_precision_policy()
|
| 246 |
-
#print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}")
|
| 247 |
-
|
| 248 |
self._tmp_dirs = set()
|
| 249 |
RESULTS_DIR.mkdir(exist_ok=True)
|
| 250 |
print(f"[INFO] VideoService pronto. Tempo de inicialização: {time.perf_counter()-t0:.2f}s")
|
|
@@ -253,6 +299,30 @@ class VideoService:
|
|
| 253 |
# --- Métodos Públicos (API do Serviço) ---
|
| 254 |
# --------------------------------------------------------------------------
|
| 255 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
def generate_low_resolution(
|
| 257 |
self, prompt: str, negative_prompt: str,
|
| 258 |
height: int, width: int, duration_secs: float,
|
|
@@ -263,45 +333,120 @@ class VideoService:
|
|
| 263 |
Gera um vídeo de baixa resolução e retorna os caminhos para o vídeo e os latentes.
|
| 264 |
"""
|
| 265 |
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
|
|
|
|
|
|
| 266 |
actual_num_frames = int(duration_secs * DEFAULT_FPS)
|
| 267 |
-
#= self._calculate_downscaled_dims(height, width)
|
| 268 |
|
|
|
|
| 269 |
|
| 270 |
first_pass_kwargs = {
|
| 271 |
"prompt": prompt,
|
| 272 |
"negative_prompt": negative_prompt,
|
| 273 |
-
"height":
|
| 274 |
-
"width":
|
| 275 |
-
"num_frames": max(
|
| 276 |
"frame_rate": int(DEFAULT_FPS),
|
| 277 |
"generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 278 |
"output_type": "latent",
|
| 279 |
"conditioning_items": conditioning_items,
|
| 280 |
"guidance_scale": float(guidance_scale),
|
| 281 |
-
"is_video": True,
|
| 282 |
-
"vae_per_channel_normalize": True,
|
| 283 |
**(self.config.get("first_pass", {}))
|
| 284 |
}
|
| 285 |
|
| 286 |
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_")
|
| 287 |
self._register_tmp_dir(temp_dir)
|
| 288 |
-
|
| 289 |
-
pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 290 |
-
video_path = self._save_video_from_tensor(pixel_tensor, "low_res_video", used_seed, temp_dir)
|
| 291 |
-
latents_path = self._save_latents_to_disk(latents, "latents_low_res", used_seed)
|
| 292 |
-
|
| 293 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
return video_path, latents_path, used_seed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
finally:
|
| 296 |
self._finalize()
|
| 297 |
|
| 298 |
-
|
| 299 |
def encode_latents_to_mp4(self, latents_path: str, fps: int = int(DEFAULT_FPS)) -> str:
|
| 300 |
"""Decodifica um tensor de latentes salvo e o salva como um vídeo MP4."""
|
| 301 |
latents = torch.load(latents_path)
|
| 302 |
temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_")
|
| 303 |
self._register_tmp_dir(temp_dir)
|
| 304 |
-
|
|
|
|
| 305 |
try:
|
| 306 |
chunks = self._split_latents_with_overlap(latents)
|
| 307 |
pixel_chunks = []
|
|
@@ -419,7 +564,12 @@ class VideoService:
|
|
| 419 |
# Filtro AdaIN para manter consistência de cor/estilo com o vídeo de baixa resolução
|
| 420 |
return adain_filter_latent(latents=upsampled_latents_normalized, reference_latents=latents)
|
| 421 |
|
| 422 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 423 |
def _calculate_downscaled_dims(self, height: int, width: int) -> Tuple[int, int]:
|
| 424 |
"""Calcula as dimensões para o primeiro passo (baixa resolução)."""
|
| 425 |
height_padded = ((height - 1) // 8 + 1) * 8
|
|
@@ -498,17 +648,8 @@ class VideoService:
|
|
| 498 |
if torch.backends.mps.is_available():
|
| 499 |
torch.mps.manual_seed(seed)
|
| 500 |
|
| 501 |
-
def _apply_precision_policy(self):
|
| 502 |
-
precision = str(self.config.get("precision", "bfloat16")).lower()
|
| 503 |
-
if precision in ["float8_e4m3fn", "bfloat16"]: self.runtime_autocast_dtype = torch.bfloat16
|
| 504 |
-
elif precision == "mixed_precision": self.runtime_autocast_dtype = torch.float16
|
| 505 |
-
else: self.runtime_autocast_dtype = torch.float32
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
# ==============================================================================
|
| 511 |
# 4. INSTANCIAÇÃO E PONTO DE ENTRADA (Exemplo)
|
| 512 |
# ==============================================================================
|
| 513 |
-
|
| 514 |
-
|
|
|
|
| 19 |
from pathlib import Path
|
| 20 |
from typing import List, Dict, Optional, Tuple, Union
|
| 21 |
|
|
|
|
| 22 |
# --- Configurações de Logging e Avisos ---
|
| 23 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 24 |
warnings.filterwarnings("ignore", category=FutureWarning)
|
|
|
|
| 91 |
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 92 |
import ltx_video.pipelines.crf_compressor as crf_compressor
|
| 93 |
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def load_image_to_tensor_with_resize_and_crop(
|
| 97 |
+
image_input: Union[str, Image.Image],
|
| 98 |
+
target_height: int = 512,
|
| 99 |
+
target_width: int = 768,
|
| 100 |
+
just_crop: bool = False,
|
| 101 |
+
) -> torch.Tensor:
|
| 102 |
+
"""Load and process an image into a tensor.
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
image_input: Either a file path (str) or a PIL Image object
|
| 106 |
+
target_height: Desired height of output tensor
|
| 107 |
+
target_width: Desired width of output tensor
|
| 108 |
+
just_crop: If True, only crop the image to the target size without resizing
|
| 109 |
+
"""
|
| 110 |
+
if isinstance(image_input, str):
|
| 111 |
+
image = Image.open(image_input).convert("RGB")
|
| 112 |
+
elif isinstance(image_input, Image.Image):
|
| 113 |
+
image = image_input
|
| 114 |
+
else:
|
| 115 |
+
raise ValueError("image_input must be either a file path or a PIL Image object")
|
| 116 |
+
|
| 117 |
+
input_width, input_height = image.size
|
| 118 |
+
aspect_ratio_target = target_width / target_height
|
| 119 |
+
aspect_ratio_frame = input_width / input_height
|
| 120 |
+
if aspect_ratio_frame > aspect_ratio_target:
|
| 121 |
+
new_width = int(input_height * aspect_ratio_target)
|
| 122 |
+
new_height = input_height
|
| 123 |
+
x_start = (input_width - new_width) // 2
|
| 124 |
+
y_start = 0
|
| 125 |
+
else:
|
| 126 |
+
new_width = input_width
|
| 127 |
+
new_height = int(input_width / aspect_ratio_target)
|
| 128 |
+
x_start = 0
|
| 129 |
+
y_start = (input_height - new_height) // 2
|
| 130 |
+
|
| 131 |
+
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
|
| 132 |
+
if not just_crop:
|
| 133 |
+
image = image.resize((target_width, target_height))
|
| 134 |
+
|
| 135 |
+
image = np.array(image)
|
| 136 |
+
image = cv2.GaussianBlur(image, (3, 3), 0)
|
| 137 |
+
frame_tensor = torch.from_numpy(image).float()
|
| 138 |
+
frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0
|
| 139 |
+
frame_tensor = frame_tensor.permute(2, 0, 1)
|
| 140 |
+
frame_tensor = (frame_tensor / 127.5) - 1.0
|
| 141 |
+
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
|
| 142 |
+
return frame_tensor.unsqueeze(0).unsqueeze(2)
|
| 143 |
|
| 144 |
def create_latent_upsampler(latent_upsampler_model_path: str, device: str):
|
| 145 |
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
|
|
|
|
| 216 |
transformer = transformer.to(torch.bfloat16)
|
| 217 |
text_encoder = text_encoder.to(torch.bfloat16)
|
| 218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
# Use submodels for the pipeline
|
| 220 |
submodel_dict = {
|
| 221 |
"transformer": transformer,
|
|
|
|
| 232 |
}
|
| 233 |
|
| 234 |
pipeline = LTXVideoPipeline(**submodel_dict)
|
|
|
|
| 235 |
pipeline = pipeline.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
return pipeline
|
| 237 |
|
| 238 |
+
# ==============================================================================
|
| 239 |
+
# 2. FUNÇÕES AUXILIARES DE PROCESSAMENTO
|
| 240 |
+
# ==============================================================================
|
| 241 |
+
|
| 242 |
+
def calculate_padding(orig_h: int, orig_w: int, target_h: int, target_w: int) -> Tuple[int, int, int, int]:
|
| 243 |
+
"""Calcula o preenchimento para centralizar uma imagem em uma nova dimensão."""
|
| 244 |
+
pad_h = target_h - orig_h
|
| 245 |
+
pad_w = target_w - orig_w
|
| 246 |
+
pad_top = pad_h // 2
|
| 247 |
+
pad_bottom = pad_h - pad_top
|
| 248 |
+
pad_left = pad_w // 2
|
| 249 |
+
pad_right = pad_w - pad_left
|
| 250 |
+
return (pad_left, pad_right, pad_top, pad_bottom)
|
| 251 |
+
|
| 252 |
+
def log_tensor_info(tensor: torch.Tensor, name: str = "Tensor"):
|
| 253 |
+
"""Exibe informações detalhadas sobre um tensor para depuração."""
|
| 254 |
+
if not isinstance(tensor, torch.Tensor):
|
| 255 |
+
print(f"\n[INFO] '{name}' não é um tensor.")
|
| 256 |
+
return
|
| 257 |
+
print(f"\n--- Tensor Info: {name} ---")
|
| 258 |
+
print(f" - Shape: {tuple(tensor.shape)}")
|
| 259 |
+
print(f" - Dtype: {tensor.dtype}")
|
| 260 |
+
print(f" - Device: {tensor.device}")
|
| 261 |
+
if tensor.numel() > 0:
|
| 262 |
+
try:
|
| 263 |
+
print(f" - Stats: Min={tensor.min().item():.4f}, Max={tensor.max().item():.4f}, Mean={tensor.mean().item():.4f}")
|
| 264 |
+
except RuntimeError:
|
| 265 |
+
print(" - Stats: Não foi possível calcular (ex: tensores bool).")
|
| 266 |
+
print("-" * 30)
|
| 267 |
|
| 268 |
# ==============================================================================
|
| 269 |
# 3. CLASSE PRINCIPAL DO SERVIÇO DE VÍDEO
|
|
|
|
| 280 |
t0 = time.perf_counter()
|
| 281 |
print("[INFO] Inicializando VideoService...")
|
| 282 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 283 |
+
self.config = self._load_config("ltxv-13b-0.9.8-distilled-fp8.yaml")
|
| 284 |
|
| 285 |
self.pipeline, self.latent_upsampler = self._load_models_from_hub()
|
| 286 |
self._move_models_to_device()
|
|
|
|
| 291 |
device=self.device,
|
| 292 |
autocast_dtype=self.runtime_autocast_dtype
|
| 293 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 294 |
self._tmp_dirs = set()
|
| 295 |
RESULTS_DIR.mkdir(exist_ok=True)
|
| 296 |
print(f"[INFO] VideoService pronto. Tempo de inicialização: {time.perf_counter()-t0:.2f}s")
|
|
|
|
| 299 |
# --- Métodos Públicos (API do Serviço) ---
|
| 300 |
# --------------------------------------------------------------------------
|
| 301 |
|
| 302 |
+
def _prepare_condition_items(self, items_list: List[Tuple], height: int, width: int, num_frames: int) -> List[ConditioningItem]:
|
| 303 |
+
"""Prepara os tensores de condicionamento a partir de imagens ou tensores."""
|
| 304 |
+
if not items_list:
|
| 305 |
+
return []
|
| 306 |
+
|
| 307 |
+
height, width = self._calculate_downscaled_dims(height, width)
|
| 308 |
+
|
| 309 |
+
height_padded = ((height - 1) // 8 + 1) * 8
|
| 310 |
+
width_padded = ((width - 1) // 8 + 1) * 8
|
| 311 |
+
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 312 |
+
|
| 313 |
+
conditioning_items = []
|
| 314 |
+
for media, frame_idx, weight in items_list:
|
| 315 |
+
if isinstance(media, str):
|
| 316 |
+
tensor = self._prepare_conditioning_tensor_from_path(media, height, width, padding_values)
|
| 317 |
+
else: # Assume que é um tensor
|
| 318 |
+
tensor = media.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 319 |
+
|
| 320 |
+
# Garante que o frame de condicionamento esteja dentro dos limites do vídeo
|
| 321 |
+
safe_frame_idx = max(0, min(int(frame_idx), num_frames - 1))
|
| 322 |
+
conditioning_items.append(ConditioningItem(tensor, safe_frame_idx, float(weight)))
|
| 323 |
+
|
| 324 |
+
return conditioning_items
|
| 325 |
+
|
| 326 |
def generate_low_resolution(
|
| 327 |
self, prompt: str, negative_prompt: str,
|
| 328 |
height: int, width: int, duration_secs: float,
|
|
|
|
| 333 |
Gera um vídeo de baixa resolução e retorna os caminhos para o vídeo e os latentes.
|
| 334 |
"""
|
| 335 |
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 336 |
+
self._seed_everething(used_seed)
|
| 337 |
+
|
| 338 |
actual_num_frames = int(duration_secs * DEFAULT_FPS)
|
|
|
|
| 339 |
|
| 340 |
+
downscaled_height, downscaled_width = self._calculate_downscaled_dims(height, width)
|
| 341 |
|
| 342 |
first_pass_kwargs = {
|
| 343 |
"prompt": prompt,
|
| 344 |
"negative_prompt": negative_prompt,
|
| 345 |
+
"height": downscaled_height,
|
| 346 |
+
"width": downscaled_width,
|
| 347 |
+
"num_frames": max(3, actual_num_frames//8)+1,
|
| 348 |
"frame_rate": int(DEFAULT_FPS),
|
| 349 |
"generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 350 |
"output_type": "latent",
|
| 351 |
"conditioning_items": conditioning_items,
|
| 352 |
"guidance_scale": float(guidance_scale),
|
|
|
|
|
|
|
| 353 |
**(self.config.get("first_pass", {}))
|
| 354 |
}
|
| 355 |
|
| 356 |
temp_dir = tempfile.mkdtemp(prefix="ltxv_low_")
|
| 357 |
self._register_tmp_dir(temp_dir)
|
| 358 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
try:
|
| 360 |
+
with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')):
|
| 361 |
+
latents = self.pipeline(**first_pass_kwargs).images
|
| 362 |
+
pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 363 |
+
video_path = self._save_video_from_tensor(pixel_tensor, "low_res_video", used_seed, temp_dir)
|
| 364 |
+
latents_path = self._save_latents_to_disk(latents, "latents_low_res", used_seed)
|
| 365 |
+
|
| 366 |
+
|
| 367 |
return video_path, latents_path, used_seed
|
| 368 |
+
|
| 369 |
+
except Exception as e:
|
| 370 |
+
print(f"[ERROR] Falha na geração de baixa resolução: {e}")
|
| 371 |
+
traceback.print_exc()
|
| 372 |
+
raise
|
| 373 |
+
finally:
|
| 374 |
+
self._finalize()
|
| 375 |
+
|
| 376 |
+
def generate_upscale_denoise(
|
| 377 |
+
self, latents_path: str, prompt: str,
|
| 378 |
+
negative_prompt: str, height: int, width: int,
|
| 379 |
+
num_frames: float, guidance_scale: float, seed: Optional[int] = None,
|
| 380 |
+
conditioning_items: Optional[List[ConditioningItem]] = None
|
| 381 |
+
) -> Tuple[str, str]:
|
| 382 |
+
"""
|
| 383 |
+
Aplica upscale, AdaIN e Denoise em latentes de baixa resolução usando um processo de chunking.
|
| 384 |
+
"""
|
| 385 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 386 |
+
self._seed_everething(used_seed)
|
| 387 |
+
|
| 388 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_up_")
|
| 389 |
+
self._register_tmp_dir(temp_dir)
|
| 390 |
+
|
| 391 |
+
try:
|
| 392 |
+
latents_low = torch.load(latents_path).to(self.device)
|
| 393 |
+
with torch.autocast(device_type=self.device.split(':')[0], dtype=self.runtime_autocast_dtype, enabled=(self.device == 'cuda')):
|
| 394 |
+
upsampled_latents = latents_low #self._upsample_and_filter_latents(latents_low)
|
| 395 |
+
|
| 396 |
+
#chunks = self._split_latents_with_overlap(upsampled_latents)
|
| 397 |
+
#refined_chunks = []
|
| 398 |
+
|
| 399 |
+
#for chunk in chunks:
|
| 400 |
+
#if chunk.shape[2] <= 1: continue # Pula chunks inválidos
|
| 401 |
+
|
| 402 |
+
chunk = upsampled_latents
|
| 403 |
+
|
| 404 |
+
second_pass_height = chunk.shape[3] * self.pipeline.vae_scale_factor
|
| 405 |
+
second_pass_width = chunk.shape[4] * self.pipeline.vae_scale_factor
|
| 406 |
+
|
| 407 |
+
second_pass_kwargs = {
|
| 408 |
+
"prompt": prompt,
|
| 409 |
+
"negative_prompt": negative_prompt,
|
| 410 |
+
"height": second_pass_height,
|
| 411 |
+
"width": second_pass_width,
|
| 412 |
+
"frame_rate": int(DEFAULT_FPS),
|
| 413 |
+
"num_frames": num_frames,
|
| 414 |
+
"latents": chunk, # O tensor completo é passado aqui
|
| 415 |
+
"guidance_scale": float(guidance_scale),
|
| 416 |
+
"output_type": "latent",
|
| 417 |
+
"generator": torch.Generator(device=self.device).manual_seed(used_seed),
|
| 418 |
+
"conditioning_items": conditioning_items,
|
| 419 |
+
**(self.config.get("second_pass", {}))
|
| 420 |
+
}
|
| 421 |
+
refined_chunk = self.pipeline(**second_pass_kwargs).images
|
| 422 |
+
#refined_chunks.append(refined_chunk)
|
| 423 |
+
|
| 424 |
+
del latents_low; torch.cuda.empty_cache()
|
| 425 |
+
|
| 426 |
+
final_latents = refined_chunk #self._merge_chunks_with_overlap(refined_chunks)
|
| 427 |
+
#if LTXV_DEBUG:
|
| 428 |
+
# log_tensor_info(final_latents, "Latentes Upscaled/Refinados Finais")
|
| 429 |
+
|
| 430 |
+
latents_path = self._save_latents_to_disk(final_latents, "latents_refined", used_seed)
|
| 431 |
+
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 432 |
+
video_path = self._save_video_from_tensor(pixel_tensor, "refined_video", used_seed, temp_dir)
|
| 433 |
+
|
| 434 |
+
return video_path, latents_path
|
| 435 |
+
|
| 436 |
+
except Exception as e:
|
| 437 |
+
print(f"[ERROR] Falha no processo de upscale e denoise: {e}")
|
| 438 |
+
traceback.print_exc()
|
| 439 |
+
raise
|
| 440 |
finally:
|
| 441 |
self._finalize()
|
| 442 |
|
|
|
|
| 443 |
def encode_latents_to_mp4(self, latents_path: str, fps: int = int(DEFAULT_FPS)) -> str:
|
| 444 |
"""Decodifica um tensor de latentes salvo e o salva como um vídeo MP4."""
|
| 445 |
latents = torch.load(latents_path)
|
| 446 |
temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_")
|
| 447 |
self._register_tmp_dir(temp_dir)
|
| 448 |
+
seed = random.randint(0, 99999) # Seed apenas para nome do arquivo
|
| 449 |
+
|
| 450 |
try:
|
| 451 |
chunks = self._split_latents_with_overlap(latents)
|
| 452 |
pixel_chunks = []
|
|
|
|
| 564 |
# Filtro AdaIN para manter consistência de cor/estilo com o vídeo de baixa resolução
|
| 565 |
return adain_filter_latent(latents=upsampled_latents_normalized, reference_latents=latents)
|
| 566 |
|
| 567 |
+
def _prepare_conditioning_tensor_from_path(self, filepath: str, height: int, width: int, padding: Tuple) -> torch.Tensor:
|
| 568 |
+
"""Carrega uma imagem, redimensiona, aplica padding e move para o dispositivo."""
|
| 569 |
+
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 570 |
+
tensor = F.pad(tensor, padding)
|
| 571 |
+
return tensor.to(self.device, dtype=self.runtime_autocast_dtype)
|
| 572 |
+
|
| 573 |
def _calculate_downscaled_dims(self, height: int, width: int) -> Tuple[int, int]:
|
| 574 |
"""Calcula as dimensões para o primeiro passo (baixa resolução)."""
|
| 575 |
height_padded = ((height - 1) // 8 + 1) * 8
|
|
|
|
| 648 |
if torch.backends.mps.is_available():
|
| 649 |
torch.mps.manual_seed(seed)
|
| 650 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 651 |
# ==============================================================================
|
| 652 |
# 4. INSTANCIAÇÃO E PONTO DE ENTRADA (Exemplo)
|
| 653 |
# ==============================================================================
|
| 654 |
+
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 655 |
+
video_generation_service = VideoService()
|