Refactor and optimize all interface chart code
Browse files- app.py +453 -669
- app_18_09_2025.py +823 -0
    	
        app.py
    CHANGED
    
    | @@ -3,189 +3,232 @@ from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
| 3 | 
             
            import pandas as pd
         | 
| 4 | 
             
            from apscheduler.schedulers.background import BackgroundScheduler
         | 
| 5 | 
             
            from huggingface_hub import snapshot_download
         | 
| 6 | 
            -
            from  | 
|  | |
|  | |
|  | |
|  | |
| 7 | 
             
            from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
         | 
| 8 | 
             
            from src.display.css_html_js import custom_css
         | 
| 9 | 
            -
            from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields,  | 
|  | |
| 10 | 
             
            from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
         | 
| 11 | 
             
            from src.populate import get_evaluation_queue_df, get_leaderboard_df
         | 
| 12 | 
             
            from src.submission.submit import add_new_eval
         | 
| 13 | 
            -
            import random
         | 
| 14 | 
             
            import matplotlib.pyplot as plt
         | 
| 15 | 
             
            import re
         | 
| 16 | 
             
            import plotly.express as px
         | 
| 17 | 
             
            import plotly.graph_objects as go
         | 
| 18 | 
             
            import numpy as np
         | 
| 19 |  | 
|  | |
|  | |
|  | |
| 20 |  | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
                 | 
|  | |
|  | |
| 24 |  | 
| 25 | 
            -
             | 
| 26 | 
            -
             | 
|  | |
|  | |
| 27 |  | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
            -
                """
         | 
| 31 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 32 |  | 
| 33 | 
            -
                #print(df.columns)
         | 
| 34 |  | 
| 35 | 
            -
             | 
| 36 | 
            -
                 | 
| 37 | 
            -
                 | 
| 38 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 39 |  | 
| 40 | 
            -
                # Calcola il massimo per ciascun campo
         | 
| 41 | 
            -
                max_values = df[fields].max()
         | 
| 42 |  | 
| 43 | 
            -
             | 
| 44 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 45 |  | 
| 46 | 
            -
                return mean_max
         | 
| 47 |  | 
|  | |
|  | |
|  | |
|  | |
| 48 |  | 
| 49 | 
            -
            def barplot_mean_few_minus_zero_shot(dataframe, tasks=None):
         | 
| 50 | 
            -
                if tasks is None:
         | 
| 51 | 
            -
                    tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
         | 
| 52 |  | 
| 53 | 
            -
             | 
|  | |
| 54 |  | 
| 55 | 
            -
                 | 
| 56 | 
            -
                     | 
| 57 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 58 |  | 
| 59 | 
            -
             | 
| 60 | 
            -
                    few_shot = dataframe[dataframe['IS_FS'] == True][["Model", task]]
         | 
| 61 | 
            -
                    zero_shot = dataframe[dataframe['IS_FS'] == False][["Model", task]]
         | 
| 62 |  | 
| 63 | 
            -
             | 
| 64 | 
            -
             | 
|  | |
| 65 |  | 
| 66 | 
            -
                     | 
| 67 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
| 68 |  | 
| 69 | 
            -
                     | 
| 70 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 71 |  | 
| 72 | 
            -
                     | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
             | 
| 76 | 
            -
             | 
| 77 | 
            -
             | 
| 78 | 
            -
             | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
| 84 | 
            -
             | 
| 85 | 
            -
                     | 
| 86 | 
            -
                )])
         | 
| 87 | 
            -
             | 
| 88 | 
            -
                # Linea di riferimento a 0
         | 
| 89 | 
            -
                '''
         | 
| 90 | 
            -
                fig.add_shape(
         | 
| 91 | 
            -
                    type="line",
         | 
| 92 | 
            -
                    x0=-0.5, x1=len(task_means) - 0.5,
         | 
| 93 | 
            -
                    y0=0, y1=0,
         | 
| 94 | 
            -
                    line=dict(color="black", width=2, dash="dash"),
         | 
| 95 | 
            -
                    xref="x", yref="y"
         | 
| 96 | 
            -
                )
         | 
| 97 | 
            -
                '''
         | 
| 98 |  | 
|  | |
| 99 | 
             
                fig.update_layout(
         | 
| 100 | 
            -
                    title=" | 
| 101 | 
            -
                    xaxis_title="",
         | 
| 102 | 
            -
                     | 
| 103 | 
            -
                     | 
| 104 | 
            -
                     | 
| 105 | 
            -
                     | 
| 106 | 
             
                )
         | 
| 107 |  | 
|  | |
| 108 | 
             
                fig.add_annotation(
         | 
| 109 | 
            -
                    text=" | 
| 110 | 
            -
                         " | 
| 111 | 
            -
                    xref="paper", yref="paper",
         | 
| 112 | 
            -
                     | 
| 113 | 
            -
                     | 
| 114 | 
            -
                    font=dict(size=11, color="gray"),
         | 
| 115 | 
            -
                    align="left"
         | 
| 116 | 
             
                )
         | 
| 117 |  | 
| 118 | 
            -
                 | 
|  | |
| 119 |  | 
|  | |
| 120 |  | 
| 121 | 
            -
            def boxplot_per_task(dataframe=None, baselines=None, references=None):
         | 
| 122 |  | 
| 123 | 
            -
             | 
|  | |
|  | |
| 124 |  | 
| 125 | 
             
                tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
         | 
| 126 |  | 
|  | |
| 127 | 
             
                if dataframe is None:
         | 
| 128 | 
             
                    np.random.seed(42)
         | 
| 129 | 
            -
                    dataframe = pd.DataFrame({
         | 
| 130 | 
            -
                        task: np.random.uniform(0.4, 0.9, 20) * 100
         | 
| 131 | 
            -
                        for task in tasks
         | 
| 132 | 
            -
                    })
         | 
| 133 |  | 
| 134 | 
             
                if baselines is None:
         | 
| 135 | 
             
                    baselines = {task: np.random.randint(50, 70) for task in tasks}
         | 
| 136 |  | 
|  | |
|  | |
|  | |
| 137 | 
             
                colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
         | 
| 138 | 
             
                          "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
         | 
| 139 |  | 
| 140 | 
             
                fig = go.Figure()
         | 
| 141 |  | 
| 142 | 
             
                for i, task in enumerate(tasks):
         | 
| 143 | 
            -
                    if task in dataframe.columns:
         | 
| 144 | 
            -
                         | 
| 145 | 
            -
             | 
| 146 | 
            -
                        # boxplot
         | 
| 147 | 
            -
                        fig.add_trace(go.Box(
         | 
| 148 | 
            -
                            y=y_data,
         | 
| 149 | 
            -
                            name=task,
         | 
| 150 | 
            -
                            marker=dict(color=colors[i]),
         | 
| 151 | 
            -
                            line=dict(color="black", width=2),
         | 
| 152 | 
            -
                            fillcolor=colors[i],
         | 
| 153 | 
            -
                            opacity=0.7,
         | 
| 154 | 
            -
                            hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
         | 
| 155 | 
            -
                            width=0.6,
         | 
| 156 | 
            -
                            whiskerwidth=0.2,
         | 
| 157 | 
            -
                            quartilemethod="linear"
         | 
| 158 | 
            -
                        ))
         | 
| 159 | 
            -
             | 
| 160 | 
            -
                        # baseline
         | 
| 161 | 
            -
                        if task in baselines and baselines[task] is not None:
         | 
| 162 | 
            -
                            fig.add_shape(
         | 
| 163 | 
            -
                                type="line",
         | 
| 164 | 
            -
                                x0=i - 0.3, x1=i + 0.3,
         | 
| 165 | 
            -
                                y0=baselines[task], y1=baselines[task],
         | 
| 166 | 
            -
                                line=dict(color="black", width=2, dash="dot"),  # più visibile
         | 
| 167 | 
            -
                                xref="x", yref="y"
         | 
| 168 | 
            -
                            )
         | 
| 169 | 
            -
                            '''
         | 
| 170 | 
            -
                            fig.add_annotation(
         | 
| 171 | 
            -
                                x=i, y=baselines[task],
         | 
| 172 | 
            -
                                text=f"{baselines[task]}%",
         | 
| 173 | 
            -
                                showarrow=False,
         | 
| 174 | 
            -
                                yshift=10,
         | 
| 175 | 
            -
                                font=dict(size=10, color="black")
         | 
| 176 | 
            -
                            )
         | 
| 177 | 
            -
                            '''
         | 
| 178 | 
            -
             | 
| 179 | 
            -
                        # reference GPT-4o
         | 
| 180 | 
            -
                        if task in references and references[task] is not None:
         | 
| 181 | 
            -
                            fig.add_shape(
         | 
| 182 | 
            -
                                type="line",
         | 
| 183 | 
            -
                                x0=i - 0.3, x1=i + 0.3,
         | 
| 184 | 
            -
                                y0=references[task], y1=references[task],
         | 
| 185 | 
            -
                                line=dict(color="red", width=2, dash="dashdot"),
         | 
| 186 | 
            -
                                xref="x", yref="y"
         | 
| 187 | 
            -
                            )
         | 
| 188 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 189 | 
             
                fig.update_layout(
         | 
| 190 | 
             
                    title="Distribution of Model Accuracy by Task",
         | 
| 191 | 
             
                    xaxis_title="Task",
         | 
| @@ -194,9 +237,10 @@ def boxplot_per_task(dataframe=None, baselines=None, references=None): | |
| 194 | 
             
                    boxmode="group",
         | 
| 195 | 
             
                    dragmode=False,
         | 
| 196 | 
             
                    font=dict(family="Arial", size=10),
         | 
| 197 | 
            -
                    margin=dict(b=80) | 
| 198 | 
             
                )
         | 
| 199 |  | 
|  | |
| 200 | 
             
                fig.add_annotation(
         | 
| 201 | 
             
                    text=(
         | 
| 202 | 
             
                        "In tasks like TE and SA, models approach the accuracy of supervised <br>"
         | 
| @@ -207,416 +251,108 @@ def boxplot_per_task(dataframe=None, baselines=None, references=None): | |
| 207 | 
             
                    x=0.5, y=-0.30,
         | 
| 208 | 
             
                    showarrow=False,
         | 
| 209 | 
             
                    font=dict(size=11, color="gray"),
         | 
| 210 | 
            -
                    align=" | 
| 211 | 
             
                )
         | 
| 212 |  | 
| 213 | 
             
                fig.update_yaxes(range=[0, 100], fixedrange=True)
         | 
|  | |
| 214 |  | 
| 215 | 
             
                return fig
         | 
| 216 |  | 
| 217 | 
            -
            # EVALITA results
         | 
| 218 | 
            -
            BASELINES = {
         | 
| 219 | 
            -
                "TE":71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
         | 
| 220 | 
            -
                "LS": 38.82, "SU": 38.91, "NER":88.00, "REL": 62.99
         | 
| 221 | 
            -
            }
         | 
| 222 | 
            -
             | 
| 223 | 
            -
            # GPT-4o
         | 
| 224 | 
            -
            REFERENCES = {
         | 
| 225 | 
            -
                "NER": 79.11,
         | 
| 226 | 
            -
                "REL": 63.32,
         | 
| 227 | 
            -
                "LS": 59.25,
         | 
| 228 | 
            -
                "SU": 33.04
         | 
| 229 | 
            -
             | 
| 230 | 
            -
            }
         | 
| 231 | 
            -
             | 
| 232 | 
            -
             | 
| 233 | 
            -
            def boxplot_prompts_per_task(dataframe, tasks=None):
         | 
| 234 | 
            -
                if tasks is None:
         | 
| 235 | 
            -
                    tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
         | 
| 236 | 
            -
             | 
| 237 | 
            -
                # Lista delle colonne da aggiornare
         | 
| 238 | 
            -
                cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
         | 
| 239 | 
            -
                # Applichiamo la trasformazione
         | 
| 240 | 
            -
                for col in cols_to_update:
         | 
| 241 | 
            -
                    dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
         | 
| 242 | 
            -
             | 
| 243 | 
            -
                fig = go.Figure()
         | 
| 244 | 
            -
             | 
| 245 | 
            -
                # Liste per creare una sola voce in legenda per Average e Best
         | 
| 246 | 
            -
                avg_x, avg_y = [], []
         | 
| 247 | 
            -
                best_x, best_y, best_text = [], [], []
         | 
| 248 | 
            -
             | 
| 249 | 
            -
                for task in tasks:
         | 
| 250 | 
            -
                    avg_col = f"{task} Prompt Average"
         | 
| 251 | 
            -
                    best_col = f"{task} Best Prompt"
         | 
| 252 | 
            -
                    best_id_col = f"{task} Best Prompt Id"
         | 
| 253 | 
            -
             | 
| 254 | 
            -
                    if all(col in dataframe.columns for col in [avg_col, best_col, best_id_col]):
         | 
| 255 | 
            -
                        avg_value = dataframe[avg_col].mean()
         | 
| 256 | 
            -
                        avg_x.append(task)
         | 
| 257 | 
            -
                        avg_y.append(avg_value)
         | 
| 258 | 
            -
             | 
| 259 | 
            -
                        best_value = dataframe[best_col].mean()
         | 
| 260 | 
            -
                        best_x.append(task)
         | 
| 261 | 
            -
                        best_y.append(best_value)
         | 
| 262 | 
            -
                        best_id = dataframe[best_id_col].mode()[0]  # Most frequent best prompt id
         | 
| 263 | 
            -
                        best_text.append(f"P:{best_id}")
         | 
| 264 | 
            -
             | 
| 265 | 
            -
                # Barre Average Accuracy (azzurro)
         | 
| 266 | 
            -
                fig.add_trace(go.Bar(
         | 
| 267 | 
            -
                    x=avg_x,
         | 
| 268 | 
            -
                    y=avg_y,
         | 
| 269 | 
            -
                    name="Avg. Accuracy",
         | 
| 270 | 
            -
                    marker_color="#1f77b4",
         | 
| 271 | 
            -
                    #hovertemplate="%{y:.2f}%<extra></extra>"
         | 
| 272 | 
            -
                    #hovertemplate="<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
         | 
| 273 | 
            -
                ))
         | 
| 274 | 
            -
             | 
| 275 | 
            -
                # Barre Best Prompt (rosso)
         | 
| 276 | 
            -
                fig.add_trace(go.Bar(
         | 
| 277 | 
            -
                    x=best_x,
         | 
| 278 | 
            -
                    y=best_y,
         | 
| 279 | 
            -
                    name="Best Prompt",
         | 
| 280 | 
            -
                    marker_color="#d62728",
         | 
| 281 | 
            -
                    #hovertemplate="%{y:.2f}%<extra></extra>"
         | 
| 282 | 
            -
                    #hovertemplate = "<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
         | 
| 283 | 
            -
                ))
         | 
| 284 | 
            -
             | 
| 285 | 
            -
                # Testo sopra barre Best Prompt con ID
         | 
| 286 | 
            -
                for x, y, text in zip(best_x, best_y, best_text):
         | 
| 287 | 
            -
                    fig.add_annotation(
         | 
| 288 | 
            -
                        x=x,
         | 
| 289 | 
            -
                        y=y + 3,  # leggermente sopra la barra
         | 
| 290 | 
            -
                        text=text,
         | 
| 291 | 
            -
                        showarrow=False,
         | 
| 292 | 
            -
                        font=dict(size=12, color="black")
         | 
| 293 | 
            -
                    )
         | 
| 294 | 
            -
             | 
| 295 | 
            -
                fig.update_layout(
         | 
| 296 | 
            -
                    title= "Prompt Accuracy: Avg vs Best",
         | 
| 297 | 
            -
                    xaxis_title="Task",
         | 
| 298 | 
            -
                    yaxis_title="Combined Performance",
         | 
| 299 | 
            -
                    barmode='group',
         | 
| 300 | 
            -
                    template="plotly_white",
         | 
| 301 | 
            -
                    font=dict(family="Arial", size=10),
         | 
| 302 | 
            -
                    yaxis=dict(range=[0, 100], fixedrange=True)
         | 
| 303 | 
            -
                )
         | 
| 304 | 
            -
             | 
| 305 | 
            -
                # caption come annotazione separata
         | 
| 306 | 
            -
                fig.add_annotation(
         | 
| 307 | 
            -
                    text="There is no single prompt that performs best across all tasks.<br>"
         | 
| 308 | 
            -
                         "Different prompts achieve the highest accuracy on different tasks.",
         | 
| 309 | 
            -
                    xref="paper", yref="paper",
         | 
| 310 | 
            -
                    x=0.5, y=-0.3,
         | 
| 311 | 
            -
                    showarrow=False,
         | 
| 312 | 
            -
                    font=dict(size=11, color="gray"),
         | 
| 313 | 
            -
                    align="center",
         | 
| 314 | 
            -
                    xanchor="center"
         | 
| 315 | 
            -
                )
         | 
| 316 | 
            -
             | 
| 317 | 
            -
                return fig
         | 
| 318 | 
            -
             | 
| 319 | 
            -
             | 
| 320 | 
            -
            def line_chart(dataframe):
         | 
| 321 | 
            -
             | 
| 322 | 
            -
                # Normalizza le dimensioni per avere marker non troppo piccoli né enormi
         | 
| 323 | 
            -
                def scale_sizes(values, min_size=8, max_size=30):
         | 
| 324 | 
            -
                    vmin, vmax = min(values), max(values)
         | 
| 325 | 
            -
                    return [
         | 
| 326 | 
            -
                        min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin else (min_size + max_size) / 2
         | 
| 327 | 
            -
                        for val in values
         | 
| 328 | 
            -
                    ]
         | 
| 329 | 
            -
             | 
| 330 | 
            -
                # dati in base a IS_FS
         | 
| 331 | 
            -
                df_true = dataframe[dataframe['IS_FS'] == True]
         | 
| 332 | 
            -
                df_false = dataframe[dataframe['IS_FS'] == False]
         | 
| 333 | 
            -
             | 
| 334 | 
            -
                # Estrai valori x, y e labels
         | 
| 335 | 
            -
                x_true = df_true['#Params (B)'].tolist()
         | 
| 336 | 
            -
                y_true = df_true['Avg. Comb. Perf. ⬆️'].tolist()
         | 
| 337 | 
            -
                labels_true = [re.search(r'>([^<]+)<', m).group(1) for m in df_true['Model'].tolist()]
         | 
| 338 | 
            -
             | 
| 339 | 
            -
                x_false = df_false['#Params (B)'].tolist()
         | 
| 340 | 
            -
                y_false = df_false['Avg. Comb. Perf. ⬆️'].tolist()
         | 
| 341 | 
            -
                labels_false = [re.search(r'>([^<]+)<', m).group(1) for m in df_false['Model'].tolist()]
         | 
| 342 | 
            -
             | 
| 343 | 
            -
                fig = go.Figure()
         | 
| 344 | 
            -
             | 
| 345 | 
            -
                # Punti IS_FS=True
         | 
| 346 | 
            -
                fig.add_trace(go.Scatter(
         | 
| 347 | 
            -
                    x=x_true,
         | 
| 348 | 
            -
                    y=y_true,
         | 
| 349 | 
            -
                    mode='markers',
         | 
| 350 | 
            -
                    name='5-Shot',
         | 
| 351 | 
            -
                    marker=dict(
         | 
| 352 | 
            -
                        color='blue',
         | 
| 353 | 
            -
                        size=scale_sizes(x_true)
         | 
| 354 | 
            -
                    ),
         | 
| 355 | 
            -
                    hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
         | 
| 356 | 
            -
                    customdata=labels_true
         | 
| 357 | 
            -
                ))
         | 
| 358 | 
            -
             | 
| 359 | 
            -
                # Punti IS_FS=False
         | 
| 360 | 
            -
                fig.add_trace(go.Scatter(
         | 
| 361 | 
            -
                    x=x_false,
         | 
| 362 | 
            -
                    y=y_false,
         | 
| 363 | 
            -
                    mode='markers',
         | 
| 364 | 
            -
                    name='0-Shot',
         | 
| 365 | 
            -
                    marker=dict(
         | 
| 366 | 
            -
                        color='red',
         | 
| 367 | 
            -
                        size=scale_sizes(x_false)
         | 
| 368 | 
            -
                    ),
         | 
| 369 | 
            -
                    hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
         | 
| 370 | 
            -
                    customdata=labels_false
         | 
| 371 | 
            -
                ))
         | 
| 372 | 
            -
             | 
| 373 | 
            -
                # Trova il massimo tra tutti i modelli
         | 
| 374 | 
            -
                all_y = y_true + y_false
         | 
| 375 | 
            -
                all_x = x_true + x_false
         | 
| 376 | 
            -
                all_labels = labels_true + labels_false
         | 
| 377 | 
            -
                max_idx = all_y.index(max(all_y))
         | 
| 378 | 
            -
                max_x = all_x[max_idx]
         | 
| 379 | 
            -
                max_y = all_y[max_idx]
         | 
| 380 | 
            -
                max_label = all_labels[max_idx]
         | 
| 381 | 
            -
             | 
| 382 | 
            -
                # Aggiungi annotazione visibile per il modello migliore
         | 
| 383 | 
            -
                fig.add_annotation(
         | 
| 384 | 
            -
                    x=max_x,
         | 
| 385 | 
            -
                    y=max_y,
         | 
| 386 | 
            -
                    #text=f"Top: {max_label} ({max_y:.1f}%)",
         | 
| 387 | 
            -
                    text=f"{max_label}",
         | 
| 388 | 
            -
                    showarrow=True,
         | 
| 389 | 
            -
                    arrowhead=2,
         | 
| 390 | 
            -
                    arrowsize=1,
         | 
| 391 | 
            -
                    arrowwidth=2,
         | 
| 392 | 
            -
                    arrowcolor="black",
         | 
| 393 | 
            -
                    font=dict(size=11, color="black"),
         | 
| 394 | 
            -
                    xshift=10,
         | 
| 395 | 
            -
                    yshift=10,
         | 
| 396 | 
            -
                    ax = -30, ay = -20,  # sposta la label a sinistra e sopra il punto
         | 
| 397 | 
            -
                    xanchor = "right"  # allinea la label a destra rispetto al punto
         | 
| 398 | 
            -
                )
         | 
| 399 | 
            -
             | 
| 400 | 
            -
                fig.update_layout(
         | 
| 401 | 
            -
                    title="Avg. Combined Performance vs #Params",
         | 
| 402 | 
            -
                    xaxis_title="#Params (B)",
         | 
| 403 | 
            -
                    yaxis_title="Avg. Combined Performance",
         | 
| 404 | 
            -
                    template="plotly_white",
         | 
| 405 | 
            -
                    hovermode="closest",
         | 
| 406 | 
            -
                    font=dict(family="Arial", size=10),
         | 
| 407 | 
            -
                    dragmode=False,
         | 
| 408 | 
            -
                    xaxis=dict(
         | 
| 409 | 
            -
                        tickvals=[0, 25, 50, 75, 100, 125],
         | 
| 410 | 
            -
                        ticktext=["0", "25", "50", "75", "100"]
         | 
| 411 | 
            -
                    ),
         | 
| 412 | 
            -
                    yaxis=dict(
         | 
| 413 | 
            -
                        tickvals=[0, 20, 40, 60, 80, 100],  # 👈 tick fissi
         | 
| 414 | 
            -
                        range=[0, 100]  # 👈 range bloccato
         | 
| 415 | 
            -
                    )
         | 
| 416 | 
            -
                )
         | 
| 417 | 
            -
             | 
| 418 | 
            -
                # Caption
         | 
| 419 | 
            -
                fig.add_annotation(
         | 
| 420 | 
            -
                    text="Accuracy generally rises with #Params, but smaller models <br>"
         | 
| 421 | 
            -
                         "with 5-shot can outperform larger zero-shot models.",
         | 
| 422 | 
            -
                    xref="paper", yref="paper",
         | 
| 423 | 
            -
                    x=0.5, y=-0.3,  # 👈 centrata
         | 
| 424 | 
            -
                    showarrow=False,
         | 
| 425 | 
            -
                    font=dict(size=11, color="gray"),
         | 
| 426 | 
            -
                    align="center",
         | 
| 427 | 
            -
                    xanchor="center"  # 👈 ancora centrata rispetto al testo
         | 
| 428 | 
            -
                )
         | 
| 429 | 
            -
             | 
| 430 | 
            -
                fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
         | 
| 431 | 
            -
                fig.update_yaxes(fixedrange=True)
         | 
| 432 | 
            -
             | 
| 433 | 
            -
                return fig
         | 
| 434 | 
            -
             | 
| 435 | 
            -
             | 
| 436 | 
            -
            # Define task metadata (icons, names, descriptions)
         | 
| 437 | 
            -
            TASK_METADATA_MULTIPLECHOICE = {
         | 
| 438 | 
            -
                "TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
         | 
| 439 | 
            -
                "SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": ""},
         | 
| 440 | 
            -
                "HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
         | 
| 441 | 
            -
                "AT": {"icon": "🏥", "name": "Admission Test", "tooltip": ""},
         | 
| 442 | 
            -
                "WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": ""},
         | 
| 443 | 
            -
                "FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
         | 
| 444 | 
            -
            }
         | 
| 445 | 
            -
             | 
| 446 | 
            -
            # Define task metadata (icons, names, descriptions)
         | 
| 447 | 
            -
            TASK_METADATA_GENERATIVE = {
         | 
| 448 | 
            -
                "LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": ""},
         | 
| 449 | 
            -
                "SU": {"icon": "📝", "name": "Summarization", "tooltip": ""},
         | 
| 450 | 
            -
                "NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
         | 
| 451 | 
            -
                "REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": ""},
         | 
| 452 | 
            -
            }
         | 
| 453 |  | 
| 454 | 
            -
            def  | 
| 455 | 
            -
                """ | 
| 456 | 
            -
                 | 
| 457 | 
            -
             | 
| 458 | 
            -
             | 
| 459 | 
            -
             | 
| 460 | 
            -
                """
         | 
| 461 | 
            -
                Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.
         | 
| 462 | 
            -
                The table is sorted based on the "Avg. Combined Performance" field.
         | 
| 463 | 
            -
                """
         | 
| 464 | 
            -
                if dataframe is None or dataframe.empty:
         | 
| 465 | 
            -
                    raise ValueError("Leaderboard DataFrame is empty or None.")
         | 
| 466 | 
            -
             | 
| 467 | 
            -
                #print("????????????????????????????????", mean_of_max_per_field(dataframe))
         | 
| 468 | 
            -
             | 
| 469 | 
            -
                sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)
         | 
| 470 | 
            -
             | 
| 471 | 
            -
                sorted_dataframe = sorted_dataframe.reset_index(drop=True)
         | 
| 472 | 
            -
                sorted_dataframe["Rank"] = sorted_dataframe.index + 1
         | 
| 473 |  | 
| 474 | 
            -
                # Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
         | 
| 475 | 
            -
                large_medal_fs_assigned = False
         | 
| 476 | 
            -
                medium_medal_fs_assigned = False
         | 
| 477 | 
            -
                small_medal_fs_assigned = False
         | 
| 478 | 
            -
             | 
| 479 | 
            -
                large_medal_0shot_assigned = False
         | 
| 480 | 
            -
                medium_medal_0shot_assigned = False
         | 
| 481 | 
            -
                small_medal_0shot_assigned = False
         | 
| 482 | 
            -
             | 
| 483 | 
            -
                # Lista temporanea per salvare i nuovi valori della colonna Model
         | 
| 484 | 
             
                new_model_column = []
         | 
| 485 |  | 
| 486 | 
            -
                for _, row in  | 
| 487 | 
            -
                     | 
| 488 | 
            -
             | 
| 489 | 
            -
             | 
| 490 | 
            -
             | 
| 491 | 
            -
             | 
| 492 | 
            -
             | 
| 493 | 
            -
                             | 
| 494 | 
            -
             | 
| 495 | 
            -
             | 
| 496 | 
            -
                             | 
| 497 | 
            -
             | 
| 498 | 
            -
             | 
|  | |
|  | |
| 499 | 
             
                    else:  # 0-Shot
         | 
| 500 | 
            -
                        if  | 
| 501 | 
            -
                             | 
| 502 | 
            -
                             | 
| 503 | 
            -
                        elif  | 
| 504 | 
            -
                             | 
| 505 | 
            -
                             | 
| 506 | 
            -
                        elif  | 
| 507 | 
            -
                             | 
| 508 | 
            -
                             | 
| 509 | 
            -
                        else:
         | 
| 510 | 
            -
                            new_model_column.append(row["Model"])
         | 
| 511 | 
            -
             | 
| 512 | 
            -
                # Lista delle colonne da aggiornare
         | 
| 513 | 
            -
                #cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
         | 
| 514 | 
            -
                # Applichiamo la trasformazione
         | 
| 515 | 
            -
                #for col in cols_to_update:
         | 
| 516 | 
            -
                #    dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
         | 
| 517 | 
            -
             | 
| 518 | 
            -
                # Aggiorna la colonna Model
         | 
| 519 | 
            -
                sorted_dataframe["Model"] = new_model_column
         | 
| 520 |  | 
| 521 | 
            -
             | 
|  | |
|  | |
| 522 |  | 
|  | |
|  | |
|  | |
| 523 | 
             
                return Leaderboard(
         | 
| 524 | 
             
                    value=sorted_dataframe,
         | 
| 525 | 
             
                    datatype=[c.type for c in field_list],
         | 
| 526 | 
            -
                    #select_columns=SelectColumns(
         | 
| 527 | 
            -
                    #    default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
         | 
| 528 | 
            -
                    #    cant_deselect=[c.name for c in field_list if c.never_hidden],
         | 
| 529 | 
            -
                    #    label="Select Columns to Display:",
         | 
| 530 | 
            -
                    #),
         | 
| 531 | 
             
                    search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
         | 
| 532 | 
            -
                    hide_columns=hidden_columns | 
| 533 | 
             
                    filter_columns=[
         | 
| 534 | 
             
                        ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
         | 
| 535 | 
            -
                         | 
| 536 | 
            -
             | 
| 537 | 
            -
                        ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max = 100, default = [0,100], label="Select the number of parameters (B)"),
         | 
| 538 | 
             
                    ],
         | 
| 539 | 
            -
                    #filter_columns=[
         | 
| 540 | 
            -
                    #    ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
         | 
| 541 | 
            -
                    #    #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
         | 
| 542 | 
            -
                    #],
         | 
| 543 | 
             
                    bool_checkboxgroup_label="Evaluation Mode",
         | 
| 544 | 
             
                    interactive=False,
         | 
| 545 | 
             
                )
         | 
| 546 |  | 
| 547 | 
            -
             | 
| 548 | 
            -
             | 
| 549 | 
            -
                 | 
| 550 | 
            -
                The table is sorted based on the "Combined Performance" field.
         | 
| 551 | 
            -
                """
         | 
| 552 | 
             
                if dataframe is None or dataframe.empty:
         | 
| 553 | 
             
                    raise ValueError("Leaderboard DataFrame is empty or None.")
         | 
| 554 |  | 
| 555 | 
            -
                 | 
| 556 | 
            -
             | 
| 557 | 
            -
                # aggiungo la colonna rank in base alla posizione
         | 
| 558 | 
            -
                sorted_dataframe = sorted_dataframe.reset_index(drop=True)
         | 
| 559 | 
             
                sorted_dataframe["Rank"] = sorted_dataframe.index + 1
         | 
| 560 |  | 
| 561 | 
            -
                #  | 
| 562 | 
            -
                 | 
| 563 | 
            -
                medium_medal_fs_assigned = False
         | 
| 564 | 
            -
                small_medal_fs_assigned = False
         | 
| 565 |  | 
| 566 | 
            -
                 | 
| 567 | 
            -
                medium_medal_0shot_assigned = False
         | 
| 568 | 
            -
                small_medal_0shot_assigned = False
         | 
| 569 |  | 
| 570 | 
            -
                 | 
| 571 | 
            -
                new_model_column = []
         | 
| 572 |  | 
| 573 | 
            -
             | 
| 574 | 
            -
             | 
| 575 | 
            -
             | 
| 576 | 
            -
             | 
| 577 | 
            -
             | 
| 578 | 
            -
             | 
| 579 | 
            -
             | 
| 580 | 
            -
             | 
| 581 | 
            -
             | 
| 582 | 
            -
             | 
| 583 | 
            -
             | 
| 584 | 
            -
             | 
| 585 | 
            -
                            new_model_column.append(row["Model"])
         | 
| 586 | 
            -
                    else:  # 0-Shot
         | 
| 587 | 
            -
                        if row["Size"] == "🔵🔵🔵" and not large_medal_0shot_assigned:
         | 
| 588 | 
            -
                            new_model_column.append(f"{row['Model']} 🔵🔵🔵🎖️")
         | 
| 589 | 
            -
                            large_medal_0shot_assigned = True
         | 
| 590 | 
            -
                        elif row["Size"] == "🔵🔵" and not medium_medal_0shot_assigned:
         | 
| 591 | 
            -
                            new_model_column.append(f"{row['Model']} 🔵🔵🎖️")
         | 
| 592 | 
            -
                            medium_medal_0shot_assigned = True
         | 
| 593 | 
            -
                        elif row["Size"] == "🔵" and not small_medal_0shot_assigned:
         | 
| 594 | 
            -
                            new_model_column.append(f"{row['Model']} 🔵🎖️")
         | 
| 595 | 
            -
                            small_medal_0shot_assigned = True
         | 
| 596 | 
            -
                        else:
         | 
| 597 | 
            -
                            new_model_column.append(row["Model"])
         | 
| 598 | 
            -
             | 
| 599 | 
            -
                # Aggiorna la colonna Model
         | 
| 600 | 
            -
                sorted_dataframe["Model"] = new_model_column
         | 
| 601 | 
            -
             | 
| 602 | 
            -
                pd.set_option('display.max_colwidth', None)
         | 
| 603 | 
            -
                #print("========================", dataframe['Model'])
         | 
| 604 | 
            -
             | 
| 605 | 
            -
                #print(sorted_dataframe['Combined Performance'])
         | 
| 606 |  | 
| 607 | 
             
                field_list = fields(AutoEvalColumn)
         | 
| 608 |  | 
| 609 | 
             
                return Leaderboard(
         | 
| 610 | 
             
                    value=sorted_dataframe,
         | 
| 611 | 
            -
                    #datatype=[c.type for c in field_list],
         | 
| 612 | 
             
                    datatype=[c.type for c in field_list] + [int],
         | 
| 613 | 
            -
                    #select_columns=SelectColumns(
         | 
| 614 | 
            -
                    #    default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
         | 
| 615 | 
            -
                    #    cant_deselect=[c.name for c in field_list if c.never_hidden],
         | 
| 616 | 
            -
                    #    label="Select Columns to Display:",
         | 
| 617 | 
            -
                    #),
         | 
| 618 | 
             
                    search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
         | 
| 619 | 
            -
                    hide_columns=hidden_columns | 
| 620 | 
             
                    filter_columns=[
         | 
| 621 | 
             
                        ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
         | 
| 622 | 
             
                        ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
         | 
| @@ -626,106 +362,148 @@ def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=No | |
| 626 | 
             
                    interactive=False
         | 
| 627 | 
             
                )
         | 
| 628 |  | 
| 629 | 
            -
            '''
         | 
| 630 | 
            -
            # Helper function for leaderboard initialization
         | 
| 631 | 
            -
            def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
         | 
| 632 | 
            -
                """Initialize and return a leaderboard."""
         | 
| 633 | 
            -
                if dataframe is None or dataframe.empty:
         | 
| 634 | 
            -
                    raise ValueError("Leaderboard DataFrame is empty or None.")
         | 
| 635 |  | 
| 636 | 
            -
             | 
| 637 | 
            -
             | 
| 638 | 
            -
             | 
| 639 | 
            -
                     | 
| 640 | 
            -
                         | 
| 641 | 
            -
                         | 
| 642 | 
            -
             | 
| 643 | 
            -
             | 
| 644 | 
            -
             | 
| 645 | 
            -
             | 
| 646 | 
            -
             | 
| 647 | 
            -
             | 
| 648 | 
            -
                         | 
| 649 | 
            -
             | 
| 650 | 
            -
                     | 
| 651 | 
            -
             | 
| 652 | 
            -
             | 
| 653 | 
            -
             | 
|  | |
|  | |
| 654 |  | 
| 655 | 
            -
             | 
| 656 | 
            -
             | 
|  | |
| 657 | 
             
                try:
         | 
| 658 | 
            -
                     | 
| 659 | 
            -
                     | 
| 660 | 
             
                except Exception as e:
         | 
| 661 | 
            -
                     | 
| 662 | 
            -
             | 
| 663 | 
            -
             | 
| 664 | 
            -
             | 
| 665 | 
            -
             | 
| 666 | 
            -
             | 
| 667 | 
            -
             | 
| 668 | 
            -
             | 
| 669 | 
            -
             | 
| 670 | 
            -
             | 
| 671 | 
            -
             | 
| 672 | 
            -
             | 
| 673 | 
            -
             | 
| 674 | 
            -
             | 
| 675 | 
            -
             | 
| 676 | 
            -
             | 
| 677 | 
            -
             | 
| 678 | 
            -
             | 
| 679 | 
            -
             | 
| 680 | 
            -
             | 
| 681 | 
            -
                    """
         | 
| 682 | 
            -
             | 
| 683 | 
            -
                        < | 
| 684 | 
            -
                             | 
| 685 | 
            -
                             | 
| 686 | 
            -
             | 
| 687 | 
            -
             | 
| 688 | 
            -
             | 
| 689 | 
            -
             | 
| 690 | 
            -
             | 
| 691 | 
            -
                            -webkit-text-fill-color: transparent; 
         | 
| 692 | 
            -
                            text-shadow: 2px 2px 8px rgba(0,0,0,0.2);
         | 
| 693 | 
            -
                        ">
         | 
| 694 | 
            -
                            EVALITA-LLM Leaderboard
         | 
| 695 | 
            -
                        </h1>
         | 
| 696 | 
            -
                        <a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank" 
         | 
| 697 | 
            -
                           style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">
         | 
| 698 | 
            -
                            <!-- Icona stilizzata -->
         | 
| 699 | 
            -
                            <svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">
         | 
| 700 | 
            -
                                <path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
         | 
| 701 | 
            -
                                <path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
         | 
| 702 | 
            -
                            </svg>
         | 
| 703 | 
            -
                            Open Italian LLM Leaderboard
         | 
| 704 | 
            -
                        </a>
         | 
| 705 | 
            -
                    </div>
         | 
| 706 | 
            -
                    """
         | 
| 707 | 
            -
                )
         | 
| 708 | 
            -
                gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
         | 
| 709 |  | 
| 710 | 
            -
                # ⬇️ QUI aggiungiamo i grafici subito sotto la barra del titolo e sopra le tabs
         | 
| 711 | 
            -
                with gr.Row():
         | 
| 712 | 
            -
                    gr.Plot(value=line_chart(LEADERBOARD_DF), elem_id="line-chart")
         | 
| 713 | 
            -
                    gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
         | 
| 714 | 
            -
                    #gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF), elem_id="boxplot-prompt-task")
         | 
| 715 |  | 
| 716 | 
            -
             | 
|  | |
|  | |
|  | |
| 717 |  | 
| 718 | 
            -
             | 
| 719 | 
            -
                    with gr.TabItem("🏅 Benchmark"):
         | 
| 720 |  | 
| 721 | 
            -
             | 
| 722 | 
            -
                            LEADERBOARD_DF,
         | 
| 723 | 
            -
                            default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
         | 
| 724 | 
            -
                            hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
         | 
| 725 | 
            -
                        )
         | 
| 726 |  | 
| 727 | 
            -
             | 
| 728 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 729 | 
             
                                    <div style="
         | 
| 730 | 
             
                                        border: 2px solid #1f77b4;
         | 
| 731 | 
             
                                        border-radius: 10px;
         | 
| @@ -735,89 +513,95 @@ with demo: | |
| 735 | 
             
                                        font-size: 14px;
         | 
| 736 | 
             
                                        display: inline-block;
         | 
| 737 | 
             
                                    ">
         | 
| 738 | 
            -
                                        Theoretical performance of a model that scores the highest on every individual task:  | 
|  | |
| 739 | 
             
                                    </div>
         | 
| 740 | 
             
                                    """
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 741 | 
             
                        )
         | 
| 742 |  | 
| 743 | 
            -
                     | 
| 744 | 
            -
             | 
| 745 | 
            -
             | 
| 746 | 
            -
             | 
| 747 | 
            -
             | 
| 748 | 
            -
             | 
| 749 | 
            -
             | 
| 750 | 
            -
             | 
| 751 | 
            -
                    '''
         | 
| 752 | 
            -
             | 
| 753 | 
            -
                    # About tab
         | 
| 754 | 
            -
                    with gr.TabItem("📝 About"):
         | 
| 755 | 
            -
                        gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
         | 
| 756 | 
            -
             | 
| 757 | 
            -
                    # About tab
         | 
| 758 | 
            -
                    with gr.TabItem("║", interactive=False):
         | 
| 759 | 
            -
                        gr.Markdown("", elem_classes="markdown-text")
         | 
| 760 | 
            -
             | 
| 761 | 
            -
             | 
| 762 | 
            -
                    # Task-specific leaderboards
         | 
| 763 | 
            -
                    for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
         | 
| 764 | 
            -
             | 
| 765 | 
            -
                        with gr.TabItem(f"{metadata['icon']}{task}"):
         | 
| 766 | 
            -
             | 
| 767 | 
            -
                            task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
         | 
| 768 | 
            -
                            gr.Markdown(task_description, elem_classes="markdown-text")
         | 
| 769 | 
            -
             | 
| 770 | 
            -
                            leaderboard = update_task_leaderboard(
         | 
| 771 | 
            -
                                LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Prompt Std": "Prompt Std", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
         | 
| 772 | 
            -
                                default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
         | 
| 773 | 
            -
                                hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id']]
         | 
| 774 | 
            -
                            )
         | 
| 775 | 
            -
             | 
| 776 | 
            -
                    # About tab
         | 
| 777 | 
            -
                    with gr.TabItem("│", interactive=False):
         | 
| 778 | 
            -
                        gr.Markdown("", elem_classes="markdown-text")
         | 
| 779 | 
            -
             | 
| 780 | 
            -
                    # Task-specific leaderboards
         | 
| 781 | 
            -
                    for task, metadata in TASK_METADATA_GENERATIVE.items():
         | 
| 782 | 
            -
                        with gr.TabItem(f"{metadata['icon']}{task}"):
         | 
| 783 | 
            -
                            task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
         | 
| 784 | 
            -
                            gr.Markdown(task_description, elem_classes="markdown-text")
         | 
| 785 | 
            -
             | 
| 786 | 
            -
                            leaderboard = update_task_leaderboard(
         | 
| 787 | 
            -
                                LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
         | 
| 788 | 
            -
                                                               f"{task} Prompt Std": "Prompt Std",
         | 
| 789 | 
            -
                                                               f"{task} Best Prompt": "Best Prompt",
         | 
| 790 | 
            -
                                                               f"{task} Best Prompt Id": "Best Prompt Id",
         | 
| 791 | 
            -
                                                               task: "Combined Performance"}),
         | 
| 792 | 
            -
                                default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt',
         | 
| 793 | 
            -
                                                   'Best Prompt Id'],
         | 
| 794 | 
            -
                                hidden_columns=[col for col in LEADERBOARD_DF.columns if
         | 
| 795 | 
            -
                                                col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std',
         | 
| 796 | 
            -
                                                            'Best Prompt', 'Best Prompt Id']]
         | 
| 797 | 
            -
                            )
         | 
| 798 | 
            -
             | 
| 799 | 
            -
                # Citation section
         | 
| 800 | 
            -
                with gr.Accordion("📙 Citation", open=False):
         | 
| 801 | 
            -
                    gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
         | 
| 802 | 
            -
             | 
| 803 | 
            -
                with gr.Accordion("📙 Credits", open=False):
         | 
| 804 | 
            -
                    gr.Markdown(
         | 
| 805 | 
            -
                        """
         | 
| 806 | 
            -
                **This project has benefited from the following support:**
         | 
| 807 | 
            -
             | 
| 808 | 
            -
                - 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
         | 
| 809 | 
            -
             | 
| 810 | 
            -
                - 💶 **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
         | 
| 811 | 
            -
             | 
| 812 | 
            -
                - 🖥️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.  
         | 
| 813 | 
            -
                        """
         | 
| 814 | 
            -
                    )
         | 
| 815 |  | 
| 816 | 
            -
            # Background  | 
| 817 | 
             
            scheduler = BackgroundScheduler()
         | 
| 818 | 
             
            scheduler.add_job(restart_space, "interval", seconds=1800)
         | 
| 819 | 
             
            scheduler.start()
         | 
| 820 |  | 
| 821 | 
            -
            # Launch  | 
| 822 | 
            -
             | 
| 823 | 
            -
             | 
|  | |
|  | |
|  | 
|  | |
| 3 | 
             
            import pandas as pd
         | 
| 4 | 
             
            from apscheduler.schedulers.background import BackgroundScheduler
         | 
| 5 | 
             
            from huggingface_hub import snapshot_download
         | 
| 6 | 
            +
            from functools import lru_cache
         | 
| 7 | 
            +
            import logging
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, \
         | 
| 10 | 
            +
                LLM_BENCHMARKS_TEXT, TITLE
         | 
| 11 | 
             
            from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
         | 
| 12 | 
             
            from src.display.css_html_js import custom_css
         | 
| 13 | 
            +
            from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, \
         | 
| 14 | 
            +
                WeightType, Precision
         | 
| 15 | 
             
            from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
         | 
| 16 | 
             
            from src.populate import get_evaluation_queue_df, get_leaderboard_df
         | 
| 17 | 
             
            from src.submission.submit import add_new_eval
         | 
|  | |
| 18 | 
             
            import matplotlib.pyplot as plt
         | 
| 19 | 
             
            import re
         | 
| 20 | 
             
            import plotly.express as px
         | 
| 21 | 
             
            import plotly.graph_objects as go
         | 
| 22 | 
             
            import numpy as np
         | 
| 23 |  | 
| 24 | 
            +
            # Configure logging
         | 
| 25 | 
            +
            logging.basicConfig(level=logging.INFO)
         | 
| 26 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 27 |  | 
| 28 | 
            +
            # EVALITA results
         | 
| 29 | 
            +
            BASELINES = {
         | 
| 30 | 
            +
                "TE": 71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
         | 
| 31 | 
            +
                "LS": 38.82, "SU": 38.91, "NER": 88.00, "REL": 62.99
         | 
| 32 | 
            +
            }
         | 
| 33 |  | 
| 34 | 
            +
            # GPT-4o results
         | 
| 35 | 
            +
            REFERENCES = {
         | 
| 36 | 
            +
                "NER": 79.11, "REL": 63.32, "LS": 59.25, "SU": 33.04
         | 
| 37 | 
            +
            }
         | 
| 38 |  | 
| 39 | 
            +
            TASK_METADATA_MULTIPLECHOICE = {
         | 
| 40 | 
            +
                "TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
         | 
| 41 | 
            +
                "SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": ""},
         | 
| 42 | 
            +
                "HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
         | 
| 43 | 
            +
                "AT": {"icon": "🏥", "name": "Admission Test", "tooltip": ""},
         | 
| 44 | 
            +
                "WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": ""},
         | 
| 45 | 
            +
                "FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
         | 
| 46 | 
            +
            }
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            TASK_METADATA_GENERATIVE = {
         | 
| 49 | 
            +
                "LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": ""},
         | 
| 50 | 
            +
                "SU": {"icon": "📝", "name": "Summarization", "tooltip": ""},
         | 
| 51 | 
            +
                "NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
         | 
| 52 | 
            +
                "REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": ""},
         | 
| 53 | 
            +
            }
         | 
| 54 |  | 
|  | |
| 55 |  | 
| 56 | 
            +
            def theoretical_performance(df_hash):
         | 
| 57 | 
            +
                """
         | 
| 58 | 
            +
                Theoretical performance of a model that scores the highest on every individual task
         | 
| 59 | 
            +
                """
         | 
| 60 | 
            +
                # This is a placeholder - you'd need to pass the actual dataframe
         | 
| 61 | 
            +
                # In practice, you'd compute this once and store it
         | 
| 62 | 
            +
                #fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
         | 
| 63 | 
            +
                return 75.0  # Placeholder value
         | 
| 64 |  | 
|  | |
|  | |
| 65 |  | 
| 66 | 
            +
            def scale_sizes(values, min_size=8, max_size=30):
         | 
| 67 | 
            +
                """Normalize sizes for scatter plot markers """
         | 
| 68 | 
            +
                if not values:
         | 
| 69 | 
            +
                    return []
         | 
| 70 | 
            +
                vmin, vmax = min(values), max(values)
         | 
| 71 | 
            +
                if vmax == vmin:
         | 
| 72 | 
            +
                    return [(min_size + max_size) / 2] * len(values)
         | 
| 73 | 
            +
                return [
         | 
| 74 | 
            +
                    min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size)
         | 
| 75 | 
            +
                    for val in values
         | 
| 76 | 
            +
                ]
         | 
| 77 |  | 
|  | |
| 78 |  | 
| 79 | 
            +
            def extract_model_name(model_string):
         | 
| 80 | 
            +
                """Extract model name from HTML string."""
         | 
| 81 | 
            +
                match = re.search(r'>([^<]+)<', model_string)
         | 
| 82 | 
            +
                return match.group(1) if match else model_string
         | 
| 83 |  | 
|  | |
|  | |
|  | |
| 84 |  | 
| 85 | 
            +
            def create_line_chart(dataframe):
         | 
| 86 | 
            +
                """Create left chart."""
         | 
| 87 |  | 
| 88 | 
            +
                def scale_sizes(values, min_size=8, max_size=30):
         | 
| 89 | 
            +
                    vmin, vmax = min(values), max(values)
         | 
| 90 | 
            +
                    return [
         | 
| 91 | 
            +
                        min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin
         | 
| 92 | 
            +
                        else (min_size + max_size) / 2
         | 
| 93 | 
            +
                        for val in values
         | 
| 94 | 
            +
                    ]
         | 
| 95 |  | 
| 96 | 
            +
                fig = go.Figure()
         | 
|  | |
|  | |
| 97 |  | 
| 98 | 
            +
                # Loop su 5-Shot e 0-Shot
         | 
| 99 | 
            +
                for shot, color in [(True, "blue"), (False, "red")]:
         | 
| 100 | 
            +
                    df = dataframe[dataframe["IS_FS"] == shot]
         | 
| 101 |  | 
| 102 | 
            +
                    x = df["#Params (B)"].tolist()
         | 
| 103 | 
            +
                    y = df["Avg. Comb. Perf. ⬆️"].tolist()
         | 
| 104 | 
            +
                    labels = [
         | 
| 105 | 
            +
                        re.search(r'>([^<]+)<', m).group(1) if isinstance(m, str) and re.search(r'>([^<]+)<', m) else str(m)
         | 
| 106 | 
            +
                        for m in df["Model"].tolist()
         | 
| 107 | 
            +
                    ]
         | 
| 108 |  | 
| 109 | 
            +
                    fig.add_trace(go.Scatter(
         | 
| 110 | 
            +
                        x=x,
         | 
| 111 | 
            +
                        y=y,
         | 
| 112 | 
            +
                        mode="markers",
         | 
| 113 | 
            +
                        name="5-Shot" if shot else "0-Shot",
         | 
| 114 | 
            +
                        marker=dict(color=color, size=scale_sizes(x)),
         | 
| 115 | 
            +
                        hovertemplate="<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>",
         | 
| 116 | 
            +
                        customdata=labels,
         | 
| 117 | 
            +
                    ))
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                # Show the best model
         | 
| 120 | 
            +
                all_y = dataframe["Avg. Comb. Perf. ⬆️"].tolist()
         | 
| 121 | 
            +
                if all_y:
         | 
| 122 | 
            +
                    max_idx = all_y.index(max(all_y))
         | 
| 123 | 
            +
                    max_x = dataframe["#Params (B)"].iloc[max_idx]
         | 
| 124 | 
            +
                    max_y = all_y[max_idx]
         | 
| 125 | 
            +
                    max_label = re.search(r'>([^<]+)<', dataframe["Model"].iloc[max_idx]).group(1)
         | 
| 126 |  | 
| 127 | 
            +
                    fig.add_annotation(
         | 
| 128 | 
            +
                        x=max_x,
         | 
| 129 | 
            +
                        y=max_y,
         | 
| 130 | 
            +
                        text=max_label,
         | 
| 131 | 
            +
                        showarrow=True,
         | 
| 132 | 
            +
                        arrowhead=2,
         | 
| 133 | 
            +
                        arrowsize=1,
         | 
| 134 | 
            +
                        arrowwidth=2,
         | 
| 135 | 
            +
                        arrowcolor="black",
         | 
| 136 | 
            +
                        font=dict(size=11, color="black"),
         | 
| 137 | 
            +
                        xshift=10, yshift=10,
         | 
| 138 | 
            +
                        ax=-30, ay=-20,
         | 
| 139 | 
            +
                        xanchor="right"
         | 
| 140 | 
            +
                    )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 141 |  | 
| 142 | 
            +
                # Layout
         | 
| 143 | 
             
                fig.update_layout(
         | 
| 144 | 
            +
                    title="Avg. Combined Performance vs #Params",
         | 
| 145 | 
            +
                    xaxis_title="#Params (B)", yaxis_title="Avg. Combined Performance",
         | 
| 146 | 
            +
                    template="plotly_white", hovermode="closest",
         | 
| 147 | 
            +
                    font=dict(family="Arial", size=10), dragmode=False,
         | 
| 148 | 
            +
                    xaxis=dict(tickvals=[0, 25, 50, 75, 100, 125], ticktext=["0", "25", "50", "75", "100"]),
         | 
| 149 | 
            +
                    yaxis=dict(tickvals=[0, 20, 40, 60, 80, 100], range=[0, 100])
         | 
| 150 | 
             
                )
         | 
| 151 |  | 
| 152 | 
            +
                # Caption
         | 
| 153 | 
             
                fig.add_annotation(
         | 
| 154 | 
            +
                    text="Accuracy generally rises with #Params, but smaller models <br>"
         | 
| 155 | 
            +
                         "with 5-shot can outperform larger zero-shot models.",
         | 
| 156 | 
            +
                    xref="paper", yref="paper", x=0.5, y=-0.3,
         | 
| 157 | 
            +
                    showarrow=False, font=dict(size=11, color="gray"),
         | 
| 158 | 
            +
                    align="center", xanchor="center"
         | 
|  | |
|  | |
| 159 | 
             
                )
         | 
| 160 |  | 
| 161 | 
            +
                fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
         | 
| 162 | 
            +
                fig.update_yaxes(fixedrange=True)
         | 
| 163 |  | 
| 164 | 
            +
                return fig
         | 
| 165 |  | 
|  | |
| 166 |  | 
| 167 | 
            +
            # Create right chart
         | 
| 168 | 
            +
            def create_boxplot_task(dataframe=None, baselines=None, references=None):
         | 
| 169 | 
            +
                """Create right chart"""
         | 
| 170 |  | 
| 171 | 
             
                tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
         | 
| 172 |  | 
| 173 | 
            +
                # Dati di default se non forniti
         | 
| 174 | 
             
                if dataframe is None:
         | 
| 175 | 
             
                    np.random.seed(42)
         | 
| 176 | 
            +
                    dataframe = pd.DataFrame({task: np.random.uniform(0.4, 0.9, 20) * 100 for task in tasks})
         | 
|  | |
|  | |
|  | |
| 177 |  | 
| 178 | 
             
                if baselines is None:
         | 
| 179 | 
             
                    baselines = {task: np.random.randint(50, 70) for task in tasks}
         | 
| 180 |  | 
| 181 | 
            +
                if references is None:
         | 
| 182 | 
            +
                    references = {}
         | 
| 183 | 
            +
             | 
| 184 | 
             
                colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
         | 
| 185 | 
             
                          "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
         | 
| 186 |  | 
| 187 | 
             
                fig = go.Figure()
         | 
| 188 |  | 
| 189 | 
             
                for i, task in enumerate(tasks):
         | 
| 190 | 
            +
                    if task not in dataframe.columns:
         | 
| 191 | 
            +
                        continue
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 192 |  | 
| 193 | 
            +
                    y_data = dataframe[task].dropna().tolist()
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                    # Boxplot
         | 
| 196 | 
            +
                    fig.add_trace(go.Box(
         | 
| 197 | 
            +
                        y=y_data,
         | 
| 198 | 
            +
                        name=task,
         | 
| 199 | 
            +
                        marker=dict(color=colors[i]),
         | 
| 200 | 
            +
                        line=dict(color="black", width=2),
         | 
| 201 | 
            +
                        fillcolor=colors[i],
         | 
| 202 | 
            +
                        opacity=0.7,
         | 
| 203 | 
            +
                        hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
         | 
| 204 | 
            +
                        width=0.6,
         | 
| 205 | 
            +
                        whiskerwidth=0.2,
         | 
| 206 | 
            +
                        quartilemethod="linear"
         | 
| 207 | 
            +
                    ))
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                    # Linea baseline
         | 
| 210 | 
            +
                    baseline_value = baselines.get(task)
         | 
| 211 | 
            +
                    if baseline_value is not None:
         | 
| 212 | 
            +
                        fig.add_shape(
         | 
| 213 | 
            +
                            type="line",
         | 
| 214 | 
            +
                            x0=i - 0.3, x1=i + 0.3,
         | 
| 215 | 
            +
                            y0=baseline_value, y1=baseline_value,
         | 
| 216 | 
            +
                            line=dict(color="black", width=2, dash="dot"),
         | 
| 217 | 
            +
                            xref="x", yref="y"
         | 
| 218 | 
            +
                        )
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    # Linea reference GPT-4o
         | 
| 221 | 
            +
                    reference_value = references.get(task)
         | 
| 222 | 
            +
                    if reference_value is not None:
         | 
| 223 | 
            +
                        fig.add_shape(
         | 
| 224 | 
            +
                            type="line",
         | 
| 225 | 
            +
                            x0=i - 0.3, x1=i + 0.3,
         | 
| 226 | 
            +
                            y0=reference_value, y1=reference_value,
         | 
| 227 | 
            +
                            line=dict(color="red", width=2, dash="dashdot"),
         | 
| 228 | 
            +
                            xref="x", yref="y"
         | 
| 229 | 
            +
                        )
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                # Layout
         | 
| 232 | 
             
                fig.update_layout(
         | 
| 233 | 
             
                    title="Distribution of Model Accuracy by Task",
         | 
| 234 | 
             
                    xaxis_title="Task",
         | 
|  | |
| 237 | 
             
                    boxmode="group",
         | 
| 238 | 
             
                    dragmode=False,
         | 
| 239 | 
             
                    font=dict(family="Arial", size=10),
         | 
| 240 | 
            +
                    margin=dict(b=80)
         | 
| 241 | 
             
                )
         | 
| 242 |  | 
| 243 | 
            +
                # Caption
         | 
| 244 | 
             
                fig.add_annotation(
         | 
| 245 | 
             
                    text=(
         | 
| 246 | 
             
                        "In tasks like TE and SA, models approach the accuracy of supervised <br>"
         | 
|  | |
| 251 | 
             
                    x=0.5, y=-0.30,
         | 
| 252 | 
             
                    showarrow=False,
         | 
| 253 | 
             
                    font=dict(size=11, color="gray"),
         | 
| 254 | 
            +
                    align="center"
         | 
| 255 | 
             
                )
         | 
| 256 |  | 
| 257 | 
             
                fig.update_yaxes(range=[0, 100], fixedrange=True)
         | 
| 258 | 
            +
                fig.update_xaxes(fixedrange=True)
         | 
| 259 |  | 
| 260 | 
             
                return fig
         | 
| 261 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 262 |  | 
| 263 | 
            +
            def create_medal_assignments(sorted_df):
         | 
| 264 | 
            +
                """Function for medal assignment logic"""
         | 
| 265 | 
            +
                medals = {
         | 
| 266 | 
            +
                    'large_fs': False, 'medium_fs': False, 'small_fs': False,
         | 
| 267 | 
            +
                    'large_0shot': False, 'medium_0shot': False, 'small_0shot': False
         | 
| 268 | 
            +
                }
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 269 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 270 | 
             
                new_model_column = []
         | 
| 271 |  | 
| 272 | 
            +
                for _, row in sorted_df.iterrows():
         | 
| 273 | 
            +
                    model_name = row['Model']
         | 
| 274 | 
            +
                    size = row["Size"]
         | 
| 275 | 
            +
                    is_fs = row['IS_FS']
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                    if is_fs:  # 5-Few-Shot
         | 
| 278 | 
            +
                        if size == "🔵🔵🔵" and not medals['large_fs']:
         | 
| 279 | 
            +
                            model_name = f"{model_name} 🔵🔵🔵🏆"
         | 
| 280 | 
            +
                            medals['large_fs'] = True
         | 
| 281 | 
            +
                        elif size == "🔵🔵" and not medals['medium_fs']:
         | 
| 282 | 
            +
                            model_name = f"{model_name} 🔵🔵🏆"
         | 
| 283 | 
            +
                            medals['medium_fs'] = True
         | 
| 284 | 
            +
                        elif size == "🔵" and not medals['small_fs']:
         | 
| 285 | 
            +
                            model_name = f"{model_name} 🔵🏆"
         | 
| 286 | 
            +
                            medals['small_fs'] = True
         | 
| 287 | 
             
                    else:  # 0-Shot
         | 
| 288 | 
            +
                        if size == "🔵🔵🔵" and not medals['large_0shot']:
         | 
| 289 | 
            +
                            model_name = f"{model_name} 🔵🔵🔵🎖️"
         | 
| 290 | 
            +
                            medals['large_0shot'] = True
         | 
| 291 | 
            +
                        elif size == "🔵🔵" and not medals['medium_0shot']:
         | 
| 292 | 
            +
                            model_name = f"{model_name} 🔵🔵🎖️"
         | 
| 293 | 
            +
                            medals['medium_0shot'] = True
         | 
| 294 | 
            +
                        elif size == "🔵" and not medals['small_0shot']:
         | 
| 295 | 
            +
                            model_name = f"{model_name} 🔵🎖️"
         | 
| 296 | 
            +
                            medals['small_0shot'] = True
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 297 |  | 
| 298 | 
            +
                    new_model_column.append(model_name)
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                return new_model_column
         | 
| 301 |  | 
| 302 | 
            +
             | 
| 303 | 
            +
            def create_leaderboard_base(sorted_dataframe, field_list, hidden_columns):
         | 
| 304 | 
            +
                """Base leaderboard creation with common parameters. """
         | 
| 305 | 
             
                return Leaderboard(
         | 
| 306 | 
             
                    value=sorted_dataframe,
         | 
| 307 | 
             
                    datatype=[c.type for c in field_list],
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 308 | 
             
                    search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
         | 
| 309 | 
            +
                    hide_columns=hidden_columns,
         | 
| 310 | 
             
                    filter_columns=[
         | 
| 311 | 
             
                        ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
         | 
| 312 | 
            +
                        ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
         | 
| 313 | 
            +
                                     label="Select the number of parameters (B)"),
         | 
|  | |
| 314 | 
             
                    ],
         | 
|  | |
|  | |
|  | |
|  | |
| 315 | 
             
                    bool_checkboxgroup_label="Evaluation Mode",
         | 
| 316 | 
             
                    interactive=False,
         | 
| 317 | 
             
                )
         | 
| 318 |  | 
| 319 | 
            +
             | 
| 320 | 
            +
            def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
         | 
| 321 | 
            +
                """Leaderboard initialization. """
         | 
|  | |
|  | |
| 322 | 
             
                if dataframe is None or dataframe.empty:
         | 
| 323 | 
             
                    raise ValueError("Leaderboard DataFrame is empty or None.")
         | 
| 324 |  | 
| 325 | 
            +
                # Sort and reset index
         | 
| 326 | 
            +
                sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False).reset_index(drop=True)
         | 
|  | |
|  | |
| 327 | 
             
                sorted_dataframe["Rank"] = sorted_dataframe.index + 1
         | 
| 328 |  | 
| 329 | 
            +
                # Apply medal assignments
         | 
| 330 | 
            +
                sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
         | 
|  | |
|  | |
| 331 |  | 
| 332 | 
            +
                field_list = fields(AutoEvalColumn)
         | 
|  | |
|  | |
| 333 |  | 
| 334 | 
            +
                return create_leaderboard_base(sorted_dataframe, field_list, hidden_columns)
         | 
|  | |
| 335 |  | 
| 336 | 
            +
             | 
| 337 | 
            +
            def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
         | 
| 338 | 
            +
                """ Task-specific leaderboard update."""
         | 
| 339 | 
            +
                if dataframe is None or dataframe.empty:
         | 
| 340 | 
            +
                    raise ValueError("Leaderboard DataFrame is empty or None.")
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                # Sort and reset index
         | 
| 343 | 
            +
                sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False).reset_index(drop=True)
         | 
| 344 | 
            +
                sorted_dataframe["Rank"] = sorted_dataframe.index + 1
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                # Apply medal assignments
         | 
| 347 | 
            +
                sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 348 |  | 
| 349 | 
             
                field_list = fields(AutoEvalColumn)
         | 
| 350 |  | 
| 351 | 
             
                return Leaderboard(
         | 
| 352 | 
             
                    value=sorted_dataframe,
         | 
|  | |
| 353 | 
             
                    datatype=[c.type for c in field_list] + [int],
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 354 | 
             
                    search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
         | 
| 355 | 
            +
                    hide_columns=hidden_columns,
         | 
| 356 | 
             
                    filter_columns=[
         | 
| 357 | 
             
                        ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
         | 
| 358 | 
             
                        ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
         | 
|  | |
| 362 | 
             
                    interactive=False
         | 
| 363 | 
             
                )
         | 
| 364 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 365 |  | 
| 366 | 
            +
            def download_snapshot(repo, local_dir, max_retries=3):
         | 
| 367 | 
            +
                """Snapshot download with retry logic."""
         | 
| 368 | 
            +
                for attempt in range(max_retries):
         | 
| 369 | 
            +
                    try:
         | 
| 370 | 
            +
                        logger.info(f"Downloading from {repo} to {local_dir} (attempt {attempt + 1}/{max_retries})")
         | 
| 371 | 
            +
                        snapshot_download(
         | 
| 372 | 
            +
                            repo_id=repo,
         | 
| 373 | 
            +
                            local_dir=local_dir,
         | 
| 374 | 
            +
                            repo_type="dataset",
         | 
| 375 | 
            +
                            tqdm_class=None,
         | 
| 376 | 
            +
                            etag_timeout=30,
         | 
| 377 | 
            +
                            token=TOKEN
         | 
| 378 | 
            +
                        )
         | 
| 379 | 
            +
                        return True
         | 
| 380 | 
            +
                    except Exception as e:
         | 
| 381 | 
            +
                        logger.error(f"Error downloading {repo} (attempt {attempt + 1}): {e}")
         | 
| 382 | 
            +
                        if attempt == max_retries - 1:
         | 
| 383 | 
            +
                            logger.error(f"Failed to download {repo} after {max_retries} attempts")
         | 
| 384 | 
            +
                            return False
         | 
| 385 | 
            +
                return False
         | 
| 386 |  | 
| 387 | 
            +
             | 
| 388 | 
            +
            def restart_space():
         | 
| 389 | 
            +
                """Restart the Hugging Face space."""
         | 
| 390 | 
             
                try:
         | 
| 391 | 
            +
                    logger.info("Restarting space...")
         | 
| 392 | 
            +
                    API.restart_space(repo_id=REPO_ID)
         | 
| 393 | 
             
                except Exception as e:
         | 
| 394 | 
            +
                    logger.error(f"Error restarting space: {e}")
         | 
| 395 | 
            +
             | 
| 396 | 
            +
             | 
| 397 | 
            +
            def create_title_html():
         | 
| 398 | 
            +
                """Function for title HTML."""
         | 
| 399 | 
            +
                return """
         | 
| 400 | 
            +
                <div style="display: flex; align-items: center; position: relative; width: 100%; height: 60px; padding: 10px 0;">
         | 
| 401 | 
            +
                    <h1 style="
         | 
| 402 | 
            +
                        margin: 0 auto; 
         | 
| 403 | 
            +
                        font-weight: 900; 
         | 
| 404 | 
            +
                        font-size: 2.5em; 
         | 
| 405 | 
            +
                        letter-spacing: 2px; 
         | 
| 406 | 
            +
                        text-transform: uppercase; 
         | 
| 407 | 
            +
                        background: linear-gradient(90deg, #1f77b4, #00c6ff); 
         | 
| 408 | 
            +
                        -webkit-background-clip: text; 
         | 
| 409 | 
            +
                        -webkit-text-fill-color: transparent; 
         | 
| 410 | 
            +
                        text-shadow: 2px 2px 8px rgba(0,0,0,0.2);
         | 
| 411 | 
            +
                    ">
         | 
| 412 | 
            +
                        EVALITA-LLM Leaderboard
         | 
| 413 | 
            +
                    </h1>
         | 
| 414 | 
            +
                    <a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank" 
         | 
| 415 | 
            +
                       style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">
         | 
| 416 | 
            +
                        <svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">
         | 
| 417 | 
            +
                            <path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
         | 
| 418 | 
            +
                            <path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
         | 
| 419 | 
            +
                        </svg>
         | 
| 420 | 
            +
                        Open Italian LLM Leaderboard
         | 
| 421 | 
            +
                    </a>
         | 
| 422 | 
            +
                </div>
         | 
| 423 | 
            +
                """
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 424 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 425 |  | 
| 426 | 
            +
            def create_credits_markdown():
         | 
| 427 | 
            +
                """Credits section."""
         | 
| 428 | 
            +
                return """
         | 
| 429 | 
            +
            **This project has benefited from the following support:**
         | 
| 430 |  | 
| 431 | 
            +
            - 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
         | 
|  | |
| 432 |  | 
| 433 | 
            +
            - 💶 **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
         | 
|  | |
|  | |
|  | |
|  | |
| 434 |  | 
| 435 | 
            +
            - 🖥️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.
         | 
| 436 | 
            +
            """
         | 
| 437 | 
            +
             | 
| 438 | 
            +
             | 
| 439 | 
            +
            # Main initialization
         | 
| 440 | 
            +
            def initialize_app():
         | 
| 441 | 
            +
                """Initialize the application."""
         | 
| 442 | 
            +
                try:
         | 
| 443 | 
            +
                    # Download snapshots
         | 
| 444 | 
            +
                    queue_success = download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
         | 
| 445 | 
            +
                    results_success = download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                    if not (queue_success and results_success):
         | 
| 448 | 
            +
                        logger.error("Failed to download required data")
         | 
| 449 | 
            +
                        return None, None, None, None, None
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    # Load leaderboard data
         | 
| 452 | 
            +
                    leaderboard_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
         | 
| 453 | 
            +
                    finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(
         | 
| 454 | 
            +
                        EVAL_REQUESTS_PATH, EVAL_COLS)
         | 
| 455 | 
            +
             | 
| 456 | 
            +
                    # Calculate theoretical max performance
         | 
| 457 | 
            +
                    theoretical_max = theoretical_performance(hash(str(leaderboard_df.values.tobytes())))
         | 
| 458 | 
            +
             | 
| 459 | 
            +
                    return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max
         | 
| 460 | 
            +
             | 
| 461 | 
            +
                except Exception as e:
         | 
| 462 | 
            +
                    logger.error(f"Error initializing app: {e}")
         | 
| 463 | 
            +
                    return None, None, None, None, None
         | 
| 464 | 
            +
             | 
| 465 | 
            +
             | 
| 466 | 
            +
            # Initialize data
         | 
| 467 | 
            +
            LEADERBOARD_DF, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max_combined_perf = initialize_app()
         | 
| 468 | 
            +
             | 
| 469 | 
            +
            if LEADERBOARD_DF is None:
         | 
| 470 | 
            +
                # Fallback behavior
         | 
| 471 | 
            +
                logger.error("Failed to initialize app data")
         | 
| 472 | 
            +
                theoretical_max_combined_perf = 0.0
         | 
| 473 | 
            +
             | 
| 474 | 
            +
             | 
| 475 | 
            +
            def create_gradio_interface():
         | 
| 476 | 
            +
                """The main Gradio interface."""
         | 
| 477 | 
            +
                demo = gr.Blocks(css=custom_css)
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                with demo:
         | 
| 480 | 
            +
                    # Title
         | 
| 481 | 
            +
                    gr.HTML(create_title_html())
         | 
| 482 | 
            +
                    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                    # Charts section
         | 
| 485 | 
            +
                    with gr.Row():
         | 
| 486 | 
            +
                        if LEADERBOARD_DF is not None:
         | 
| 487 | 
            +
                            # Note: You'd need to implement these chart functions properly
         | 
| 488 | 
            +
                            gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart")
         | 
| 489 | 
            +
                            gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                    # Tabs
         | 
| 492 | 
            +
                    with gr.Tabs(elem_classes="tab-buttons") as tabs:
         | 
| 493 | 
            +
                        # Main leaderboard tab
         | 
| 494 | 
            +
                        with gr.TabItem("🏅 Benchmark"):
         | 
| 495 | 
            +
                            if LEADERBOARD_DF is not None:
         | 
| 496 | 
            +
                                leaderboard = init_leaderboard(
         | 
| 497 | 
            +
                                    LEADERBOARD_DF,
         | 
| 498 | 
            +
                                    default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT",
         | 
| 499 | 
            +
                                                       "WIC", "FAQ", "LS", "SU", "NER", "REL"],
         | 
| 500 | 
            +
                                    hidden_columns=[col for col in LEADERBOARD_DF.columns if
         | 
| 501 | 
            +
                                                    col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA",
         | 
| 502 | 
            +
                                                                "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
         | 
| 503 | 
            +
                                )
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                                gr.HTML(
         | 
| 506 | 
            +
                                    f"""
         | 
| 507 | 
             
                                    <div style="
         | 
| 508 | 
             
                                        border: 2px solid #1f77b4;
         | 
| 509 | 
             
                                        border-radius: 10px;
         | 
|  | |
| 513 | 
             
                                        font-size: 14px;
         | 
| 514 | 
             
                                        display: inline-block;
         | 
| 515 | 
             
                                    ">
         | 
| 516 | 
            +
                                        Theoretical performance of a model that scores the highest on every individual task: 
         | 
| 517 | 
            +
                                        <span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>
         | 
| 518 | 
             
                                    </div>
         | 
| 519 | 
             
                                    """
         | 
| 520 | 
            +
                                )
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                        # About tab
         | 
| 523 | 
            +
                        with gr.TabItem("📝 About"):
         | 
| 524 | 
            +
                            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                        with gr.TabItem("║", interactive=False):
         | 
| 527 | 
            +
                            gr.Markdown("", elem_classes="markdown-text")
         | 
| 528 | 
            +
             | 
| 529 | 
            +
                        # Task-specific tabs
         | 
| 530 | 
            +
                        if LEADERBOARD_DF is not None:
         | 
| 531 | 
            +
                            # Multiple choice tasks
         | 
| 532 | 
            +
                            for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
         | 
| 533 | 
            +
                                with gr.TabItem(f"{metadata['icon']}{task}"):
         | 
| 534 | 
            +
                                    task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
         | 
| 535 | 
            +
                                    gr.Markdown(task_description, elem_classes="markdown-text")
         | 
| 536 | 
            +
             | 
| 537 | 
            +
                                    leaderboard = update_task_leaderboard(
         | 
| 538 | 
            +
                                        LEADERBOARD_DF.rename(columns={
         | 
| 539 | 
            +
                                            f"{task} Prompt Average": "Prompt Average",
         | 
| 540 | 
            +
                                            f"{task} Prompt Std": "Prompt Std",
         | 
| 541 | 
            +
                                            f"{task} Best Prompt": "Best Prompt",
         | 
| 542 | 
            +
                                            f"{task} Best Prompt Id": "Best Prompt Id",
         | 
| 543 | 
            +
                                            task: "Combined Performance"
         | 
| 544 | 
            +
                                        }),
         | 
| 545 | 
            +
                                        default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average',
         | 
| 546 | 
            +
                                                           'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
         | 
| 547 | 
            +
                                        hidden_columns=[col for col in LEADERBOARD_DF.columns if
         | 
| 548 | 
            +
                                                        col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance',
         | 
| 549 | 
            +
                                                                    'Prompt Average', 'Prompt Std', 'Best Prompt',
         | 
| 550 | 
            +
                                                                    'Best Prompt Id']]
         | 
| 551 | 
            +
                                    )
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                            with gr.TabItem("│", interactive=False):
         | 
| 554 | 
            +
                                gr.Markdown("", elem_classes="markdown-text")
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                            # Generative tasks
         | 
| 557 | 
            +
                            for task, metadata in TASK_METADATA_GENERATIVE.items():
         | 
| 558 | 
            +
                                with gr.TabItem(f"{metadata['icon']}{task}"):
         | 
| 559 | 
            +
                                    task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
         | 
| 560 | 
            +
                                    gr.Markdown(task_description, elem_classes="markdown-text")
         | 
| 561 | 
            +
             | 
| 562 | 
            +
                                    leaderboard = update_task_leaderboard(
         | 
| 563 | 
            +
                                        LEADERBOARD_DF.rename(columns={
         | 
| 564 | 
            +
                                            f"{task} Prompt Average": "Prompt Average",
         | 
| 565 | 
            +
                                            f"{task} Prompt Std": "Prompt Std",
         | 
| 566 | 
            +
                                            f"{task} Best Prompt": "Best Prompt",
         | 
| 567 | 
            +
                                            f"{task} Best Prompt Id": "Best Prompt Id",
         | 
| 568 | 
            +
                                            task: "Combined Performance"
         | 
| 569 | 
            +
                                        }),
         | 
| 570 | 
            +
                                        default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average',
         | 
| 571 | 
            +
                                                           'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
         | 
| 572 | 
            +
                                        hidden_columns=[col for col in LEADERBOARD_DF.columns if
         | 
| 573 | 
            +
                                                        col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance',
         | 
| 574 | 
            +
                                                                    'Prompt Average', 'Prompt Std', 'Best Prompt',
         | 
| 575 | 
            +
                                                                    'Best Prompt Id']]
         | 
| 576 | 
            +
                                    )
         | 
| 577 | 
            +
             | 
| 578 | 
            +
                    # Citation and Credits sections
         | 
| 579 | 
            +
                    with gr.Accordion("📙 Citation", open=False):
         | 
| 580 | 
            +
                        gr.Textbox(
         | 
| 581 | 
            +
                            value=CITATION_BUTTON_TEXT,
         | 
| 582 | 
            +
                            label=CITATION_BUTTON_LABEL,
         | 
| 583 | 
            +
                            lines=20,
         | 
| 584 | 
            +
                            elem_id="citation-button",
         | 
| 585 | 
            +
                            show_copy_button=True
         | 
| 586 | 
             
                        )
         | 
| 587 |  | 
| 588 | 
            +
                    with gr.Accordion("📙 Credits", open=False):
         | 
| 589 | 
            +
                        gr.Markdown(create_credits_markdown())
         | 
| 590 | 
            +
             | 
| 591 | 
            +
                return demo
         | 
| 592 | 
            +
             | 
| 593 | 
            +
             | 
| 594 | 
            +
            # Create and configure the demo
         | 
| 595 | 
            +
            demo = create_gradio_interface()
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 596 |  | 
| 597 | 
            +
            # Background scheduler for space restart
         | 
| 598 | 
             
            scheduler = BackgroundScheduler()
         | 
| 599 | 
             
            scheduler.add_job(restart_space, "interval", seconds=1800)
         | 
| 600 | 
             
            scheduler.start()
         | 
| 601 |  | 
| 602 | 
            +
            # Launch configuration
         | 
| 603 | 
            +
            if __name__ == "__main__":
         | 
| 604 | 
            +
                demo.queue(default_concurrency_limit=40).launch(
         | 
| 605 | 
            +
                    debug=True,
         | 
| 606 | 
            +
                    show_error=True
         | 
| 607 | 
            +
                )
         | 
    	
        app_18_09_2025.py
    ADDED
    
    | @@ -0,0 +1,823 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import gradio as gr
         | 
| 2 | 
            +
            from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
         | 
| 3 | 
            +
            import pandas as pd
         | 
| 4 | 
            +
            from apscheduler.schedulers.background import BackgroundScheduler
         | 
| 5 | 
            +
            from huggingface_hub import snapshot_download
         | 
| 6 | 
            +
            from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
         | 
| 7 | 
            +
            from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION
         | 
| 8 | 
            +
            from src.display.css_html_js import custom_css
         | 
| 9 | 
            +
            from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, WeightType, Precision
         | 
| 10 | 
            +
            from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
         | 
| 11 | 
            +
            from src.populate import get_evaluation_queue_df, get_leaderboard_df
         | 
| 12 | 
            +
            from src.submission.submit import add_new_eval
         | 
| 13 | 
            +
            import random
         | 
| 14 | 
            +
            import matplotlib.pyplot as plt
         | 
| 15 | 
            +
            import re
         | 
| 16 | 
            +
            import plotly.express as px
         | 
| 17 | 
            +
            import plotly.graph_objects as go
         | 
| 18 | 
            +
            import numpy as np
         | 
| 19 | 
            +
             | 
| 20 | 
            +
             | 
| 21 | 
            +
            def mean_of_max_per_field(df):
         | 
| 22 | 
            +
                """
         | 
| 23 | 
            +
                Calcola il massimo per ciascun campo e poi la media dei massimi.
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                Args:
         | 
| 26 | 
            +
                    df (pd.DataFrame): DataFrame con colonne TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                Returns:
         | 
| 29 | 
            +
                    float: media dei valori massimi dei campi
         | 
| 30 | 
            +
                """
         | 
| 31 | 
            +
                fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                #print(df.columns)
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                # Controlla che tutte le colonne esistano nel DataFrame
         | 
| 36 | 
            +
                missing = [f for f in fields if f not in df.columns]
         | 
| 37 | 
            +
                if missing:
         | 
| 38 | 
            +
                    raise ValueError(f"Le seguenti colonne mancano nel DataFrame: {missing}")
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                # Calcola il massimo per ciascun campo
         | 
| 41 | 
            +
                max_values = df[fields].max()
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                # Calcola la media dei massimi
         | 
| 44 | 
            +
                mean_max = max_values.mean()
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                return mean_max
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            def barplot_mean_few_minus_zero_shot(dataframe, tasks=None):
         | 
| 50 | 
            +
                if tasks is None:
         | 
| 51 | 
            +
                    tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                task_means = {}
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                for task in tasks:
         | 
| 56 | 
            +
                    if task not in dataframe.columns:
         | 
| 57 | 
            +
                        continue
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                    # Separa few-shot e zero-shot
         | 
| 60 | 
            +
                    few_shot = dataframe[dataframe['IS_FS'] == True][["Model", task]]
         | 
| 61 | 
            +
                    zero_shot = dataframe[dataframe['IS_FS'] == False][["Model", task]]
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                    # Allinea i modelli
         | 
| 64 | 
            +
                    merged = pd.merge(few_shot, zero_shot, on="Model", suffixes=("_few", "_zero"))
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                    # Rimuovi righe con valori mancanti
         | 
| 67 | 
            +
                    merged = merged.dropna(subset=[f"{task}_few", f"{task}_zero"])
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                    if merged.empty:
         | 
| 70 | 
            +
                        continue
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                    # Calcola differenza few - zero
         | 
| 73 | 
            +
                    diff = merged[f"{task}_few"] - merged[f"{task}_zero"]
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                    # Calcola la media
         | 
| 76 | 
            +
                    task_means[task] = diff.mean()
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                # Crea barplot
         | 
| 79 | 
            +
                fig = go.Figure([go.Bar(
         | 
| 80 | 
            +
                    x=list(task_means.keys()),
         | 
| 81 | 
            +
                    y=list(task_means.values()),
         | 
| 82 | 
            +
                    marker_color="#ff7f0e",
         | 
| 83 | 
            +
                    text=[f"{v:.2f}" for v in task_means.values()],
         | 
| 84 | 
            +
                    textposition="outside",
         | 
| 85 | 
            +
                    hovertemplate="<b>%{x}</b><br>Mean Delta Accuracy: %{y:.2f}%<extra></extra>"
         | 
| 86 | 
            +
                )])
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                # Linea di riferimento a 0
         | 
| 89 | 
            +
                '''
         | 
| 90 | 
            +
                fig.add_shape(
         | 
| 91 | 
            +
                    type="line",
         | 
| 92 | 
            +
                    x0=-0.5, x1=len(task_means) - 0.5,
         | 
| 93 | 
            +
                    y0=0, y1=0,
         | 
| 94 | 
            +
                    line=dict(color="black", width=2, dash="dash"),
         | 
| 95 | 
            +
                    xref="x", yref="y"
         | 
| 96 | 
            +
                )
         | 
| 97 | 
            +
                '''
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                fig.update_layout(
         | 
| 100 | 
            +
                    title="Mean Accuracy Difference (Few-shot − Zero-shot) per Task",
         | 
| 101 | 
            +
                    xaxis_title="",
         | 
| 102 | 
            +
                    yaxis_title="Mean Delta Combined Performance",
         | 
| 103 | 
            +
                    template="plotly_white",
         | 
| 104 | 
            +
                    font=dict(family="Arial", size=13),
         | 
| 105 | 
            +
                    #margin=dict(b=100)
         | 
| 106 | 
            +
                )
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                fig.add_annotation(
         | 
| 109 | 
            +
                    text="5-shot learning generally outperforms zero-shot, especially in tasks like NER and REL.<br>"
         | 
| 110 | 
            +
                         "Only in Summarization (SU) does it provide no accuracy gain.",
         | 
| 111 | 
            +
                    xref="paper", yref="paper",
         | 
| 112 | 
            +
                    x=0, y=-0.2,
         | 
| 113 | 
            +
                    showarrow=False,
         | 
| 114 | 
            +
                    font=dict(size=11, color="gray"),
         | 
| 115 | 
            +
                    align="left"
         | 
| 116 | 
            +
                )
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                return fig
         | 
| 119 | 
            +
             | 
| 120 | 
            +
             | 
| 121 | 
            +
            def boxplot_per_task(dataframe=None, baselines=None, references=None):
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                #print(dataframe.columns)
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                if dataframe is None:
         | 
| 128 | 
            +
                    np.random.seed(42)
         | 
| 129 | 
            +
                    dataframe = pd.DataFrame({
         | 
| 130 | 
            +
                        task: np.random.uniform(0.4, 0.9, 20) * 100
         | 
| 131 | 
            +
                        for task in tasks
         | 
| 132 | 
            +
                    })
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                if baselines is None:
         | 
| 135 | 
            +
                    baselines = {task: np.random.randint(50, 70) for task in tasks}
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
         | 
| 138 | 
            +
                          "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"]
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                fig = go.Figure()
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                for i, task in enumerate(tasks):
         | 
| 143 | 
            +
                    if task in dataframe.columns:
         | 
| 144 | 
            +
                        y_data = dataframe[task].dropna().tolist()
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                        # boxplot
         | 
| 147 | 
            +
                        fig.add_trace(go.Box(
         | 
| 148 | 
            +
                            y=y_data,
         | 
| 149 | 
            +
                            name=task,
         | 
| 150 | 
            +
                            marker=dict(color=colors[i]),
         | 
| 151 | 
            +
                            line=dict(color="black", width=2),
         | 
| 152 | 
            +
                            fillcolor=colors[i],
         | 
| 153 | 
            +
                            opacity=0.7,
         | 
| 154 | 
            +
                            hovertemplate="<b>"+task+"</b><br>Accuracy: %{y:.2f}%<extra></extra>",
         | 
| 155 | 
            +
                            width=0.6,
         | 
| 156 | 
            +
                            whiskerwidth=0.2,
         | 
| 157 | 
            +
                            quartilemethod="linear"
         | 
| 158 | 
            +
                        ))
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                        # baseline
         | 
| 161 | 
            +
                        if task in baselines and baselines[task] is not None:
         | 
| 162 | 
            +
                            fig.add_shape(
         | 
| 163 | 
            +
                                type="line",
         | 
| 164 | 
            +
                                x0=i - 0.3, x1=i + 0.3,
         | 
| 165 | 
            +
                                y0=baselines[task], y1=baselines[task],
         | 
| 166 | 
            +
                                line=dict(color="black", width=2, dash="dot"),  # più visibile
         | 
| 167 | 
            +
                                xref="x", yref="y"
         | 
| 168 | 
            +
                            )
         | 
| 169 | 
            +
                            '''
         | 
| 170 | 
            +
                            fig.add_annotation(
         | 
| 171 | 
            +
                                x=i, y=baselines[task],
         | 
| 172 | 
            +
                                text=f"{baselines[task]}%",
         | 
| 173 | 
            +
                                showarrow=False,
         | 
| 174 | 
            +
                                yshift=10,
         | 
| 175 | 
            +
                                font=dict(size=10, color="black")
         | 
| 176 | 
            +
                            )
         | 
| 177 | 
            +
                            '''
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                        # reference GPT-4o
         | 
| 180 | 
            +
                        if task in references and references[task] is not None:
         | 
| 181 | 
            +
                            fig.add_shape(
         | 
| 182 | 
            +
                                type="line",
         | 
| 183 | 
            +
                                x0=i - 0.3, x1=i + 0.3,
         | 
| 184 | 
            +
                                y0=references[task], y1=references[task],
         | 
| 185 | 
            +
                                line=dict(color="red", width=2, dash="dashdot"),
         | 
| 186 | 
            +
                                xref="x", yref="y"
         | 
| 187 | 
            +
                            )
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                fig.update_layout(
         | 
| 190 | 
            +
                    title="Distribution of Model Accuracy by Task",
         | 
| 191 | 
            +
                    xaxis_title="Task",
         | 
| 192 | 
            +
                    yaxis_title="Combined Performance",
         | 
| 193 | 
            +
                    template="plotly_white",
         | 
| 194 | 
            +
                    boxmode="group",
         | 
| 195 | 
            +
                    dragmode=False,
         | 
| 196 | 
            +
                    font=dict(family="Arial", size=10),
         | 
| 197 | 
            +
                    margin=dict(b=80),
         | 
| 198 | 
            +
                )
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                fig.add_annotation(
         | 
| 201 | 
            +
                    text=(
         | 
| 202 | 
            +
                        "In tasks like TE and SA, models approach the accuracy of supervised <br>"
         | 
| 203 | 
            +
                        "models at EVALITA (dashed black line); in NER and REL they remain lower. <br>"
         | 
| 204 | 
            +
                        "Dashed red lines show GPT-4o reference results for generative tasks."
         | 
| 205 | 
            +
                    ),
         | 
| 206 | 
            +
                    xref="paper", yref="paper",
         | 
| 207 | 
            +
                    x=0.5, y=-0.30,
         | 
| 208 | 
            +
                    showarrow=False,
         | 
| 209 | 
            +
                    font=dict(size=11, color="gray"),
         | 
| 210 | 
            +
                    align="left"
         | 
| 211 | 
            +
                )
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                fig.update_yaxes(range=[0, 100], fixedrange=True)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                return fig
         | 
| 216 | 
            +
             | 
| 217 | 
            +
            # EVALITA results
         | 
| 218 | 
            +
            BASELINES = {
         | 
| 219 | 
            +
                "TE":71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00,
         | 
| 220 | 
            +
                "LS": 38.82, "SU": 38.91, "NER":88.00, "REL": 62.99
         | 
| 221 | 
            +
            }
         | 
| 222 | 
            +
             | 
| 223 | 
            +
            # GPT-4o
         | 
| 224 | 
            +
            REFERENCES = {
         | 
| 225 | 
            +
                "NER": 79.11,
         | 
| 226 | 
            +
                "REL": 63.32,
         | 
| 227 | 
            +
                "LS": 59.25,
         | 
| 228 | 
            +
                "SU": 33.04
         | 
| 229 | 
            +
             | 
| 230 | 
            +
            }
         | 
| 231 | 
            +
             | 
| 232 | 
            +
             | 
| 233 | 
            +
            def boxplot_prompts_per_task(dataframe, tasks=None):
         | 
| 234 | 
            +
                if tasks is None:
         | 
| 235 | 
            +
                    tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                # Lista delle colonne da aggiornare
         | 
| 238 | 
            +
                cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
         | 
| 239 | 
            +
                # Applichiamo la trasformazione
         | 
| 240 | 
            +
                for col in cols_to_update:
         | 
| 241 | 
            +
                    dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                fig = go.Figure()
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                # Liste per creare una sola voce in legenda per Average e Best
         | 
| 246 | 
            +
                avg_x, avg_y = [], []
         | 
| 247 | 
            +
                best_x, best_y, best_text = [], [], []
         | 
| 248 | 
            +
             | 
| 249 | 
            +
                for task in tasks:
         | 
| 250 | 
            +
                    avg_col = f"{task} Prompt Average"
         | 
| 251 | 
            +
                    best_col = f"{task} Best Prompt"
         | 
| 252 | 
            +
                    best_id_col = f"{task} Best Prompt Id"
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                    if all(col in dataframe.columns for col in [avg_col, best_col, best_id_col]):
         | 
| 255 | 
            +
                        avg_value = dataframe[avg_col].mean()
         | 
| 256 | 
            +
                        avg_x.append(task)
         | 
| 257 | 
            +
                        avg_y.append(avg_value)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                        best_value = dataframe[best_col].mean()
         | 
| 260 | 
            +
                        best_x.append(task)
         | 
| 261 | 
            +
                        best_y.append(best_value)
         | 
| 262 | 
            +
                        best_id = dataframe[best_id_col].mode()[0]  # Most frequent best prompt id
         | 
| 263 | 
            +
                        best_text.append(f"P:{best_id}")
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                # Barre Average Accuracy (azzurro)
         | 
| 266 | 
            +
                fig.add_trace(go.Bar(
         | 
| 267 | 
            +
                    x=avg_x,
         | 
| 268 | 
            +
                    y=avg_y,
         | 
| 269 | 
            +
                    name="Avg. Accuracy",
         | 
| 270 | 
            +
                    marker_color="#1f77b4",
         | 
| 271 | 
            +
                    #hovertemplate="%{y:.2f}%<extra></extra>"
         | 
| 272 | 
            +
                    #hovertemplate="<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
         | 
| 273 | 
            +
                ))
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                # Barre Best Prompt (rosso)
         | 
| 276 | 
            +
                fig.add_trace(go.Bar(
         | 
| 277 | 
            +
                    x=best_x,
         | 
| 278 | 
            +
                    y=best_y,
         | 
| 279 | 
            +
                    name="Best Prompt",
         | 
| 280 | 
            +
                    marker_color="#d62728",
         | 
| 281 | 
            +
                    #hovertemplate="%{y:.2f}%<extra></extra>"
         | 
| 282 | 
            +
                    #hovertemplate = "<b>" + task + "</b><br>Accuracy: %{y:.2f}%<extra></extra>",
         | 
| 283 | 
            +
                ))
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                # Testo sopra barre Best Prompt con ID
         | 
| 286 | 
            +
                for x, y, text in zip(best_x, best_y, best_text):
         | 
| 287 | 
            +
                    fig.add_annotation(
         | 
| 288 | 
            +
                        x=x,
         | 
| 289 | 
            +
                        y=y + 3,  # leggermente sopra la barra
         | 
| 290 | 
            +
                        text=text,
         | 
| 291 | 
            +
                        showarrow=False,
         | 
| 292 | 
            +
                        font=dict(size=12, color="black")
         | 
| 293 | 
            +
                    )
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                fig.update_layout(
         | 
| 296 | 
            +
                    title= "Prompt Accuracy: Avg vs Best",
         | 
| 297 | 
            +
                    xaxis_title="Task",
         | 
| 298 | 
            +
                    yaxis_title="Combined Performance",
         | 
| 299 | 
            +
                    barmode='group',
         | 
| 300 | 
            +
                    template="plotly_white",
         | 
| 301 | 
            +
                    font=dict(family="Arial", size=10),
         | 
| 302 | 
            +
                    yaxis=dict(range=[0, 100], fixedrange=True)
         | 
| 303 | 
            +
                )
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                # caption come annotazione separata
         | 
| 306 | 
            +
                fig.add_annotation(
         | 
| 307 | 
            +
                    text="There is no single prompt that performs best across all tasks.<br>"
         | 
| 308 | 
            +
                         "Different prompts achieve the highest accuracy on different tasks.",
         | 
| 309 | 
            +
                    xref="paper", yref="paper",
         | 
| 310 | 
            +
                    x=0.5, y=-0.3,
         | 
| 311 | 
            +
                    showarrow=False,
         | 
| 312 | 
            +
                    font=dict(size=11, color="gray"),
         | 
| 313 | 
            +
                    align="center",
         | 
| 314 | 
            +
                    xanchor="center"
         | 
| 315 | 
            +
                )
         | 
| 316 | 
            +
             | 
| 317 | 
            +
                return fig
         | 
| 318 | 
            +
             | 
| 319 | 
            +
             | 
| 320 | 
            +
            def line_chart(dataframe):
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                # Normalizza le dimensioni per avere marker non troppo piccoli né enormi
         | 
| 323 | 
            +
                def scale_sizes(values, min_size=8, max_size=30):
         | 
| 324 | 
            +
                    vmin, vmax = min(values), max(values)
         | 
| 325 | 
            +
                    return [
         | 
| 326 | 
            +
                        min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin else (min_size + max_size) / 2
         | 
| 327 | 
            +
                        for val in values
         | 
| 328 | 
            +
                    ]
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                # dati in base a IS_FS
         | 
| 331 | 
            +
                df_true = dataframe[dataframe['IS_FS'] == True]
         | 
| 332 | 
            +
                df_false = dataframe[dataframe['IS_FS'] == False]
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                # Estrai valori x, y e labels
         | 
| 335 | 
            +
                x_true = df_true['#Params (B)'].tolist()
         | 
| 336 | 
            +
                y_true = df_true['Avg. Comb. Perf. ⬆️'].tolist()
         | 
| 337 | 
            +
                labels_true = [re.search(r'>([^<]+)<', m).group(1) for m in df_true['Model'].tolist()]
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                x_false = df_false['#Params (B)'].tolist()
         | 
| 340 | 
            +
                y_false = df_false['Avg. Comb. Perf. ⬆️'].tolist()
         | 
| 341 | 
            +
                labels_false = [re.search(r'>([^<]+)<', m).group(1) for m in df_false['Model'].tolist()]
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                fig = go.Figure()
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                # Punti IS_FS=True
         | 
| 346 | 
            +
                fig.add_trace(go.Scatter(
         | 
| 347 | 
            +
                    x=x_true,
         | 
| 348 | 
            +
                    y=y_true,
         | 
| 349 | 
            +
                    mode='markers',
         | 
| 350 | 
            +
                    name='5-Shot',
         | 
| 351 | 
            +
                    marker=dict(
         | 
| 352 | 
            +
                        color='blue',
         | 
| 353 | 
            +
                        size=scale_sizes(x_true)
         | 
| 354 | 
            +
                    ),
         | 
| 355 | 
            +
                    hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
         | 
| 356 | 
            +
                    customdata=labels_true
         | 
| 357 | 
            +
                ))
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                # Punti IS_FS=False
         | 
| 360 | 
            +
                fig.add_trace(go.Scatter(
         | 
| 361 | 
            +
                    x=x_false,
         | 
| 362 | 
            +
                    y=y_false,
         | 
| 363 | 
            +
                    mode='markers',
         | 
| 364 | 
            +
                    name='0-Shot',
         | 
| 365 | 
            +
                    marker=dict(
         | 
| 366 | 
            +
                        color='red',
         | 
| 367 | 
            +
                        size=scale_sizes(x_false)
         | 
| 368 | 
            +
                    ),
         | 
| 369 | 
            +
                    hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
         | 
| 370 | 
            +
                    customdata=labels_false
         | 
| 371 | 
            +
                ))
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                # Trova il massimo tra tutti i modelli
         | 
| 374 | 
            +
                all_y = y_true + y_false
         | 
| 375 | 
            +
                all_x = x_true + x_false
         | 
| 376 | 
            +
                all_labels = labels_true + labels_false
         | 
| 377 | 
            +
                max_idx = all_y.index(max(all_y))
         | 
| 378 | 
            +
                max_x = all_x[max_idx]
         | 
| 379 | 
            +
                max_y = all_y[max_idx]
         | 
| 380 | 
            +
                max_label = all_labels[max_idx]
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                # Aggiungi annotazione visibile per il modello migliore
         | 
| 383 | 
            +
                fig.add_annotation(
         | 
| 384 | 
            +
                    x=max_x,
         | 
| 385 | 
            +
                    y=max_y,
         | 
| 386 | 
            +
                    #text=f"Top: {max_label} ({max_y:.1f}%)",
         | 
| 387 | 
            +
                    text=f"{max_label}",
         | 
| 388 | 
            +
                    showarrow=True,
         | 
| 389 | 
            +
                    arrowhead=2,
         | 
| 390 | 
            +
                    arrowsize=1,
         | 
| 391 | 
            +
                    arrowwidth=2,
         | 
| 392 | 
            +
                    arrowcolor="black",
         | 
| 393 | 
            +
                    font=dict(size=11, color="black"),
         | 
| 394 | 
            +
                    xshift=10,
         | 
| 395 | 
            +
                    yshift=10,
         | 
| 396 | 
            +
                    ax = -30, ay = -20,  # sposta la label a sinistra e sopra il punto
         | 
| 397 | 
            +
                    xanchor = "right"  # allinea la label a destra rispetto al punto
         | 
| 398 | 
            +
                )
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                fig.update_layout(
         | 
| 401 | 
            +
                    title="Avg. Combined Performance vs #Params",
         | 
| 402 | 
            +
                    xaxis_title="#Params (B)",
         | 
| 403 | 
            +
                    yaxis_title="Avg. Combined Performance",
         | 
| 404 | 
            +
                    template="plotly_white",
         | 
| 405 | 
            +
                    hovermode="closest",
         | 
| 406 | 
            +
                    font=dict(family="Arial", size=10),
         | 
| 407 | 
            +
                    dragmode=False,
         | 
| 408 | 
            +
                    xaxis=dict(
         | 
| 409 | 
            +
                        tickvals=[0, 25, 50, 75, 100, 125],
         | 
| 410 | 
            +
                        ticktext=["0", "25", "50", "75", "100"]
         | 
| 411 | 
            +
                    ),
         | 
| 412 | 
            +
                    yaxis=dict(
         | 
| 413 | 
            +
                        tickvals=[0, 20, 40, 60, 80, 100],  # 👈 tick fissi
         | 
| 414 | 
            +
                        range=[0, 100]  # 👈 range bloccato
         | 
| 415 | 
            +
                    )
         | 
| 416 | 
            +
                )
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                # Caption
         | 
| 419 | 
            +
                fig.add_annotation(
         | 
| 420 | 
            +
                    text="Accuracy generally rises with #Params, but smaller models <br>"
         | 
| 421 | 
            +
                         "with 5-shot can outperform larger zero-shot models.",
         | 
| 422 | 
            +
                    xref="paper", yref="paper",
         | 
| 423 | 
            +
                    x=0.5, y=-0.3,  # 👈 centrata
         | 
| 424 | 
            +
                    showarrow=False,
         | 
| 425 | 
            +
                    font=dict(size=11, color="gray"),
         | 
| 426 | 
            +
                    align="center",
         | 
| 427 | 
            +
                    xanchor="center"  # 👈 ancora centrata rispetto al testo
         | 
| 428 | 
            +
                )
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                fig.update_xaxes(fixedrange=True, rangeslider_visible=False)
         | 
| 431 | 
            +
                fig.update_yaxes(fixedrange=True)
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                return fig
         | 
| 434 | 
            +
             | 
| 435 | 
            +
             | 
| 436 | 
            +
            # Define task metadata (icons, names, descriptions)
         | 
| 437 | 
            +
            TASK_METADATA_MULTIPLECHOICE = {
         | 
| 438 | 
            +
                "TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
         | 
| 439 | 
            +
                "SA": {"icon": "😃", "name": "Sentiment Analysis", "tooltip": ""},
         | 
| 440 | 
            +
                "HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""},
         | 
| 441 | 
            +
                "AT": {"icon": "🏥", "name": "Admission Test", "tooltip": ""},
         | 
| 442 | 
            +
                "WIC": {"icon": "🔤", "name": "Word in Context", "tooltip": ""},
         | 
| 443 | 
            +
                "FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""}
         | 
| 444 | 
            +
            }
         | 
| 445 | 
            +
             | 
| 446 | 
            +
            # Define task metadata (icons, names, descriptions)
         | 
| 447 | 
            +
            TASK_METADATA_GENERATIVE = {
         | 
| 448 | 
            +
                "LS": {"icon": "🔄", "name": "Lexical Substitution", "tooltip": ""},
         | 
| 449 | 
            +
                "SU": {"icon": "📝", "name": "Summarization", "tooltip": ""},
         | 
| 450 | 
            +
                "NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""},
         | 
| 451 | 
            +
                "REL": {"icon": "🔗", "name": "Relation Extraction", "tooltip": ""},
         | 
| 452 | 
            +
            }
         | 
| 453 | 
            +
             | 
| 454 | 
            +
            def restart_space():
         | 
| 455 | 
            +
                """Restart the Hugging Face space."""
         | 
| 456 | 
            +
                API.restart_space(repo_id=REPO_ID)
         | 
| 457 | 
            +
             | 
| 458 | 
            +
             | 
| 459 | 
            +
            def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
         | 
| 460 | 
            +
                """
         | 
| 461 | 
            +
                Initialize and return the leaderboard when it is first loaded or when 'benchmark' is selected.
         | 
| 462 | 
            +
                The table is sorted based on the "Avg. Combined Performance" field.
         | 
| 463 | 
            +
                """
         | 
| 464 | 
            +
                if dataframe is None or dataframe.empty:
         | 
| 465 | 
            +
                    raise ValueError("Leaderboard DataFrame is empty or None.")
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                #print("????????????????????????????????", mean_of_max_per_field(dataframe))
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                sorted_dataframe = sorted_dataframe.reset_index(drop=True)
         | 
| 472 | 
            +
                sorted_dataframe["Rank"] = sorted_dataframe.index + 1
         | 
| 473 | 
            +
             | 
| 474 | 
            +
                # Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
         | 
| 475 | 
            +
                large_medal_fs_assigned = False
         | 
| 476 | 
            +
                medium_medal_fs_assigned = False
         | 
| 477 | 
            +
                small_medal_fs_assigned = False
         | 
| 478 | 
            +
             | 
| 479 | 
            +
                large_medal_0shot_assigned = False
         | 
| 480 | 
            +
                medium_medal_0shot_assigned = False
         | 
| 481 | 
            +
                small_medal_0shot_assigned = False
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                # Lista temporanea per salvare i nuovi valori della colonna Model
         | 
| 484 | 
            +
                new_model_column = []
         | 
| 485 | 
            +
             | 
| 486 | 
            +
                for _, row in sorted_dataframe.iterrows():
         | 
| 487 | 
            +
                    if row['IS_FS']:  # 5-Few-Shot
         | 
| 488 | 
            +
                        if row["Size"] == "🔵🔵🔵" and not large_medal_fs_assigned:
         | 
| 489 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🔵🔵🏆")
         | 
| 490 | 
            +
                            large_medal_fs_assigned = True
         | 
| 491 | 
            +
                        elif row["Size"] == "🔵🔵" and not medium_medal_fs_assigned:
         | 
| 492 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🔵🏆")
         | 
| 493 | 
            +
                            medium_medal_fs_assigned = True
         | 
| 494 | 
            +
                        elif row["Size"] == "🔵" and not small_medal_fs_assigned:
         | 
| 495 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🏆")
         | 
| 496 | 
            +
                            small_medal_fs_assigned = True
         | 
| 497 | 
            +
                        else:
         | 
| 498 | 
            +
                            new_model_column.append(row["Model"])
         | 
| 499 | 
            +
                    else:  # 0-Shot
         | 
| 500 | 
            +
                        if row["Size"] == "🔵🔵🔵" and not large_medal_0shot_assigned:
         | 
| 501 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🔵🔵🎖️")
         | 
| 502 | 
            +
                            large_medal_0shot_assigned = True
         | 
| 503 | 
            +
                        elif row["Size"] == "🔵🔵" and not medium_medal_0shot_assigned:
         | 
| 504 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🔵🎖️")
         | 
| 505 | 
            +
                            medium_medal_0shot_assigned = True
         | 
| 506 | 
            +
                        elif row["Size"] == "🔵" and not small_medal_0shot_assigned:
         | 
| 507 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🎖️")
         | 
| 508 | 
            +
                            small_medal_0shot_assigned = True
         | 
| 509 | 
            +
                        else:
         | 
| 510 | 
            +
                            new_model_column.append(row["Model"])
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                # Lista delle colonne da aggiornare
         | 
| 513 | 
            +
                #cols_to_update = ["REL Best Prompt Id", "NER Best Prompt Id", "SU Best Prompt Id", "LS Best Prompt Id"]
         | 
| 514 | 
            +
                # Applichiamo la trasformazione
         | 
| 515 | 
            +
                #for col in cols_to_update:
         | 
| 516 | 
            +
                #    dataframe[col] = dataframe[col].replace({1: 7, 2: 8})
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                # Aggiorna la colonna Model
         | 
| 519 | 
            +
                sorted_dataframe["Model"] = new_model_column
         | 
| 520 | 
            +
             | 
| 521 | 
            +
                field_list = fields(AutoEvalColumn)
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                return Leaderboard(
         | 
| 524 | 
            +
                    value=sorted_dataframe,
         | 
| 525 | 
            +
                    datatype=[c.type for c in field_list],
         | 
| 526 | 
            +
                    #select_columns=SelectColumns(
         | 
| 527 | 
            +
                    #    default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
         | 
| 528 | 
            +
                    #    cant_deselect=[c.name for c in field_list if c.never_hidden],
         | 
| 529 | 
            +
                    #    label="Select Columns to Display:",
         | 
| 530 | 
            +
                    #),
         | 
| 531 | 
            +
                    search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
         | 
| 532 | 
            +
                    hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
         | 
| 533 | 
            +
                    filter_columns=[
         | 
| 534 | 
            +
                        ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
         | 
| 535 | 
            +
                        #ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
         | 
| 536 | 
            +
                        #             default=[["0️⃣", "0️⃣"]]),
         | 
| 537 | 
            +
                        ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max = 100, default = [0,100], label="Select the number of parameters (B)"),
         | 
| 538 | 
            +
                    ],
         | 
| 539 | 
            +
                    #filter_columns=[
         | 
| 540 | 
            +
                    #    ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
         | 
| 541 | 
            +
                    #    #ColumnFilter("FS", type="dropdown", label="5-Few-Shot")
         | 
| 542 | 
            +
                    #],
         | 
| 543 | 
            +
                    bool_checkboxgroup_label="Evaluation Mode",
         | 
| 544 | 
            +
                    interactive=False,
         | 
| 545 | 
            +
                )
         | 
| 546 | 
            +
             | 
| 547 | 
            +
            def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None):
         | 
| 548 | 
            +
                """
         | 
| 549 | 
            +
                Update and return the leaderboard when a specific task is selected.
         | 
| 550 | 
            +
                The table is sorted based on the "Combined Performance" field.
         | 
| 551 | 
            +
                """
         | 
| 552 | 
            +
                if dataframe is None or dataframe.empty:
         | 
| 553 | 
            +
                    raise ValueError("Leaderboard DataFrame is empty or None.")
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                sorted_dataframe = dataframe.sort_values(by="Combined Performance", ascending=False)
         | 
| 556 | 
            +
             | 
| 557 | 
            +
                # aggiungo la colonna rank in base alla posizione
         | 
| 558 | 
            +
                sorted_dataframe = sorted_dataframe.reset_index(drop=True)
         | 
| 559 | 
            +
                sorted_dataframe["Rank"] = sorted_dataframe.index + 1
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                # Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
         | 
| 562 | 
            +
                large_medal_fs_assigned = False
         | 
| 563 | 
            +
                medium_medal_fs_assigned = False
         | 
| 564 | 
            +
                small_medal_fs_assigned = False
         | 
| 565 | 
            +
             | 
| 566 | 
            +
                large_medal_0shot_assigned = False
         | 
| 567 | 
            +
                medium_medal_0shot_assigned = False
         | 
| 568 | 
            +
                small_medal_0shot_assigned = False
         | 
| 569 | 
            +
             | 
| 570 | 
            +
                # Lista temporanea per salvare i nuovi valori della colonna Model
         | 
| 571 | 
            +
                new_model_column = []
         | 
| 572 | 
            +
             | 
| 573 | 
            +
                for _, row in sorted_dataframe.iterrows():
         | 
| 574 | 
            +
                    if row['IS_FS']:  # 5-Few-Shot
         | 
| 575 | 
            +
                        if row["Size"] == "🔵🔵🔵" and not large_medal_fs_assigned:
         | 
| 576 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🔵🔵🏆")
         | 
| 577 | 
            +
                            large_medal_fs_assigned = True
         | 
| 578 | 
            +
                        elif row["Size"] == "🔵🔵" and not medium_medal_fs_assigned:
         | 
| 579 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🔵🏆")
         | 
| 580 | 
            +
                            medium_medal_fs_assigned = True
         | 
| 581 | 
            +
                        elif row["Size"] == "🔵" and not small_medal_fs_assigned:
         | 
| 582 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🏆")
         | 
| 583 | 
            +
                            small_medal_fs_assigned = True
         | 
| 584 | 
            +
                        else:
         | 
| 585 | 
            +
                            new_model_column.append(row["Model"])
         | 
| 586 | 
            +
                    else:  # 0-Shot
         | 
| 587 | 
            +
                        if row["Size"] == "🔵🔵🔵" and not large_medal_0shot_assigned:
         | 
| 588 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🔵🔵🎖️")
         | 
| 589 | 
            +
                            large_medal_0shot_assigned = True
         | 
| 590 | 
            +
                        elif row["Size"] == "🔵🔵" and not medium_medal_0shot_assigned:
         | 
| 591 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🔵🎖️")
         | 
| 592 | 
            +
                            medium_medal_0shot_assigned = True
         | 
| 593 | 
            +
                        elif row["Size"] == "🔵" and not small_medal_0shot_assigned:
         | 
| 594 | 
            +
                            new_model_column.append(f"{row['Model']} 🔵🎖️")
         | 
| 595 | 
            +
                            small_medal_0shot_assigned = True
         | 
| 596 | 
            +
                        else:
         | 
| 597 | 
            +
                            new_model_column.append(row["Model"])
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                # Aggiorna la colonna Model
         | 
| 600 | 
            +
                sorted_dataframe["Model"] = new_model_column
         | 
| 601 | 
            +
             | 
| 602 | 
            +
                pd.set_option('display.max_colwidth', None)
         | 
| 603 | 
            +
                #print("========================", dataframe['Model'])
         | 
| 604 | 
            +
             | 
| 605 | 
            +
                #print(sorted_dataframe['Combined Performance'])
         | 
| 606 | 
            +
             | 
| 607 | 
            +
                field_list = fields(AutoEvalColumn)
         | 
| 608 | 
            +
             | 
| 609 | 
            +
                return Leaderboard(
         | 
| 610 | 
            +
                    value=sorted_dataframe,
         | 
| 611 | 
            +
                    #datatype=[c.type for c in field_list],
         | 
| 612 | 
            +
                    datatype=[c.type for c in field_list] + [int],
         | 
| 613 | 
            +
                    #select_columns=SelectColumns(
         | 
| 614 | 
            +
                    #    default_selection=default_selection or [c.name for c in field_list if c.displayed_by_default],
         | 
| 615 | 
            +
                    #    cant_deselect=[c.name for c in field_list if c.never_hidden],
         | 
| 616 | 
            +
                    #    label="Select Columns to Display:",
         | 
| 617 | 
            +
                    #),
         | 
| 618 | 
            +
                    search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
         | 
| 619 | 
            +
                    hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
         | 
| 620 | 
            +
                    filter_columns=[
         | 
| 621 | 
            +
                        ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
         | 
| 622 | 
            +
                        ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
         | 
| 623 | 
            +
                                     label="Select the number of parameters (B)"),
         | 
| 624 | 
            +
                    ],
         | 
| 625 | 
            +
                    bool_checkboxgroup_label="Evaluation Mode",
         | 
| 626 | 
            +
                    interactive=False
         | 
| 627 | 
            +
                )
         | 
| 628 | 
            +
             | 
| 629 | 
            +
            '''
         | 
| 630 | 
            +
            # Helper function for leaderboard initialization
         | 
| 631 | 
            +
            def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
         | 
| 632 | 
            +
                """Initialize and return a leaderboard."""
         | 
| 633 | 
            +
                if dataframe is None or dataframe.empty:
         | 
| 634 | 
            +
                    raise ValueError("Leaderboard DataFrame is empty or None.")
         | 
| 635 | 
            +
             | 
| 636 | 
            +
                return Leaderboard(
         | 
| 637 | 
            +
                    value=dataframe,
         | 
| 638 | 
            +
                    datatype=[c.type for c in fields(AutoEvalColumn)],
         | 
| 639 | 
            +
                    select_columns=SelectColumns(
         | 
| 640 | 
            +
                        default_selection=default_selection or [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
         | 
| 641 | 
            +
                        cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
         | 
| 642 | 
            +
                        label="Select Columns to Display:",
         | 
| 643 | 
            +
                    ),
         | 
| 644 | 
            +
                    search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
         | 
| 645 | 
            +
                    hide_columns=hidden_columns or [c.name for c in fields(AutoEvalColumn) if c.hidden],
         | 
| 646 | 
            +
                    filter_columns=[
         | 
| 647 | 
            +
                        ColumnFilter(AutoEvalColumn.fewshot_type.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)"),
         | 
| 648 | 
            +
                        ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=150, label="Select the number of parameters (B)"),
         | 
| 649 | 
            +
                    ],
         | 
| 650 | 
            +
                    bool_checkboxgroup_label="Hide models",
         | 
| 651 | 
            +
                    interactive=False,
         | 
| 652 | 
            +
                )
         | 
| 653 | 
            +
            '''
         | 
| 654 | 
            +
             | 
| 655 | 
            +
            def download_snapshot(repo, local_dir):
         | 
| 656 | 
            +
                """Try to download a snapshot from Hugging Face Hub."""
         | 
| 657 | 
            +
                try:
         | 
| 658 | 
            +
                    print(f"Downloading from {repo} to {local_dir}...")
         | 
| 659 | 
            +
                    snapshot_download(repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN)
         | 
| 660 | 
            +
                except Exception as e:
         | 
| 661 | 
            +
                    print(f"Error downloading {repo}: {e}")
         | 
| 662 | 
            +
                    restart_space()
         | 
| 663 | 
            +
             | 
| 664 | 
            +
             | 
| 665 | 
            +
            # Initialize the app by downloading snapshots
         | 
| 666 | 
            +
            download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH)
         | 
| 667 | 
            +
            download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH)
         | 
| 668 | 
            +
             | 
| 669 | 
            +
            # Load leaderboard data
         | 
| 670 | 
            +
            LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
         | 
| 671 | 
            +
            finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
         | 
| 672 | 
            +
            #print(LEADERBOARD_DF.columns.tolist())
         | 
| 673 | 
            +
             | 
| 674 | 
            +
            theoretical_max_combined_perf = mean_of_max_per_field(LEADERBOARD_DF)
         | 
| 675 | 
            +
             | 
| 676 | 
            +
            # Prepare the main interface
         | 
| 677 | 
            +
            demo = gr.Blocks(css=custom_css)
         | 
| 678 | 
            +
            with demo:
         | 
| 679 | 
            +
                #gr.HTML(TITLE)
         | 
| 680 | 
            +
                gr.HTML(
         | 
| 681 | 
            +
                    """
         | 
| 682 | 
            +
                    <div style="display: flex; align-items: center; position: relative; width: 100%; height: 60px; padding: 10px 0;">
         | 
| 683 | 
            +
                        <h1 style="
         | 
| 684 | 
            +
                            margin: 0 auto; 
         | 
| 685 | 
            +
                            font-weight: 900; 
         | 
| 686 | 
            +
                            font-size: 2.5em; 
         | 
| 687 | 
            +
                            letter-spacing: 2px; 
         | 
| 688 | 
            +
                            text-transform: uppercase; 
         | 
| 689 | 
            +
                            background: linear-gradient(90deg, #1f77b4, #00c6ff); 
         | 
| 690 | 
            +
                            -webkit-background-clip: text; 
         | 
| 691 | 
            +
                            -webkit-text-fill-color: transparent; 
         | 
| 692 | 
            +
                            text-shadow: 2px 2px 8px rgba(0,0,0,0.2);
         | 
| 693 | 
            +
                        ">
         | 
| 694 | 
            +
                            EVALITA-LLM Leaderboard
         | 
| 695 | 
            +
                        </h1>
         | 
| 696 | 
            +
                        <a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank" 
         | 
| 697 | 
            +
                           style="position: absolute; right: 0; display: inline-flex; align-items: center; gap: 6px; text-decoration: none; color: #1f77b4; font-weight: 600;">
         | 
| 698 | 
            +
                            <!-- Icona stilizzata -->
         | 
| 699 | 
            +
                            <svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">
         | 
| 700 | 
            +
                                <path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
         | 
| 701 | 
            +
                                <path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
         | 
| 702 | 
            +
                            </svg>
         | 
| 703 | 
            +
                            Open Italian LLM Leaderboard
         | 
| 704 | 
            +
                        </a>
         | 
| 705 | 
            +
                    </div>
         | 
| 706 | 
            +
                    """
         | 
| 707 | 
            +
                )
         | 
| 708 | 
            +
                gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
         | 
| 709 | 
            +
             | 
| 710 | 
            +
                # ⬇️ QUI aggiungiamo i grafici subito sotto la barra del titolo e sopra le tabs
         | 
| 711 | 
            +
                with gr.Row():
         | 
| 712 | 
            +
                    gr.Plot(value=line_chart(LEADERBOARD_DF), elem_id="line-chart")
         | 
| 713 | 
            +
                    gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="boxplot-task")
         | 
| 714 | 
            +
                    #gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF), elem_id="boxplot-prompt-task")
         | 
| 715 | 
            +
             | 
| 716 | 
            +
                with gr.Tabs(elem_classes="tab-buttons") as tabs:
         | 
| 717 | 
            +
             | 
| 718 | 
            +
                    # Main leaderboard tab
         | 
| 719 | 
            +
                    with gr.TabItem("🏅 Benchmark"):
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                        leaderboard = init_leaderboard(
         | 
| 722 | 
            +
                            LEADERBOARD_DF,
         | 
| 723 | 
            +
                            default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"],
         | 
| 724 | 
            +
                            hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
         | 
| 725 | 
            +
                        )
         | 
| 726 | 
            +
             | 
| 727 | 
            +
                        gr.HTML(
         | 
| 728 | 
            +
                            f"""
         | 
| 729 | 
            +
                                    <div style="
         | 
| 730 | 
            +
                                        border: 2px solid #1f77b4;
         | 
| 731 | 
            +
                                        border-radius: 10px;
         | 
| 732 | 
            +
                                        padding: 10px;
         | 
| 733 | 
            +
                                        background-color: #f0f8ff;
         | 
| 734 | 
            +
                                        font-weight: bold;
         | 
| 735 | 
            +
                                        font-size: 14px;
         | 
| 736 | 
            +
                                        display: inline-block;
         | 
| 737 | 
            +
                                    ">
         | 
| 738 | 
            +
                                        Theoretical performance of a model that scores the highest on every individual task: <span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>
         | 
| 739 | 
            +
                                    </div>
         | 
| 740 | 
            +
                                    """
         | 
| 741 | 
            +
                        )
         | 
| 742 | 
            +
             | 
| 743 | 
            +
                    '''
         | 
| 744 | 
            +
                    with gr.TabItem("📈 Charts"):
         | 
| 745 | 
            +
                        #gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")
         | 
| 746 | 
            +
                        #gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")
         | 
| 747 | 
            +
                        gr.Plot(value=line_chart(LEADERBOARD_DF))
         | 
| 748 | 
            +
                        gr.Plot(value=boxplot_per_task(LEADERBOARD_DF, BASELINES))
         | 
| 749 | 
            +
                        gr.Plot(value=boxplot_prompts_per_task(LEADERBOARD_DF))
         | 
| 750 | 
            +
                        gr.Plot(value=barplot_mean_few_minus_zero_shot(LEADERBOARD_DF))
         | 
| 751 | 
            +
                    '''
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                    # About tab
         | 
| 754 | 
            +
                    with gr.TabItem("📝 About"):
         | 
| 755 | 
            +
                        gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
         | 
| 756 | 
            +
             | 
| 757 | 
            +
                    # About tab
         | 
| 758 | 
            +
                    with gr.TabItem("║", interactive=False):
         | 
| 759 | 
            +
                        gr.Markdown("", elem_classes="markdown-text")
         | 
| 760 | 
            +
             | 
| 761 | 
            +
             | 
| 762 | 
            +
                    # Task-specific leaderboards
         | 
| 763 | 
            +
                    for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
         | 
| 764 | 
            +
             | 
| 765 | 
            +
                        with gr.TabItem(f"{metadata['icon']}{task}"):
         | 
| 766 | 
            +
             | 
| 767 | 
            +
                            task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
         | 
| 768 | 
            +
                            gr.Markdown(task_description, elem_classes="markdown-text")
         | 
| 769 | 
            +
             | 
| 770 | 
            +
                            leaderboard = update_task_leaderboard(
         | 
| 771 | 
            +
                                LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average", f"{task} Prompt Std": "Prompt Std", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Combined Performance"}),
         | 
| 772 | 
            +
                                default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'],
         | 
| 773 | 
            +
                                hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id']]
         | 
| 774 | 
            +
                            )
         | 
| 775 | 
            +
             | 
| 776 | 
            +
                    # About tab
         | 
| 777 | 
            +
                    with gr.TabItem("│", interactive=False):
         | 
| 778 | 
            +
                        gr.Markdown("", elem_classes="markdown-text")
         | 
| 779 | 
            +
             | 
| 780 | 
            +
                    # Task-specific leaderboards
         | 
| 781 | 
            +
                    for task, metadata in TASK_METADATA_GENERATIVE.items():
         | 
| 782 | 
            +
                        with gr.TabItem(f"{metadata['icon']}{task}"):
         | 
| 783 | 
            +
                            task_description = TASK_DESCRIPTIONS.get(task, "Description not available.")
         | 
| 784 | 
            +
                            gr.Markdown(task_description, elem_classes="markdown-text")
         | 
| 785 | 
            +
             | 
| 786 | 
            +
                            leaderboard = update_task_leaderboard(
         | 
| 787 | 
            +
                                LEADERBOARD_DF.rename(columns={f"{task} Prompt Average": "Prompt Average",
         | 
| 788 | 
            +
                                                               f"{task} Prompt Std": "Prompt Std",
         | 
| 789 | 
            +
                                                               f"{task} Best Prompt": "Best Prompt",
         | 
| 790 | 
            +
                                                               f"{task} Best Prompt Id": "Best Prompt Id",
         | 
| 791 | 
            +
                                                               task: "Combined Performance"}),
         | 
| 792 | 
            +
                                default_selection=['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std', 'Best Prompt',
         | 
| 793 | 
            +
                                                   'Best Prompt Id'],
         | 
| 794 | 
            +
                                hidden_columns=[col for col in LEADERBOARD_DF.columns if
         | 
| 795 | 
            +
                                                col not in ['Rank', 'Size', 'FS', 'Model', 'Combined Performance', 'Prompt Average', 'Prompt Std',
         | 
| 796 | 
            +
                                                            'Best Prompt', 'Best Prompt Id']]
         | 
| 797 | 
            +
                            )
         | 
| 798 | 
            +
             | 
| 799 | 
            +
                # Citation section
         | 
| 800 | 
            +
                with gr.Accordion("📙 Citation", open=False):
         | 
| 801 | 
            +
                    gr.Textbox(value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True)
         | 
| 802 | 
            +
             | 
| 803 | 
            +
                with gr.Accordion("📙 Credits", open=False):
         | 
| 804 | 
            +
                    gr.Markdown(
         | 
| 805 | 
            +
                        """
         | 
| 806 | 
            +
                **This project has benefited from the following support:**
         | 
| 807 | 
            +
             | 
| 808 | 
            +
                - 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard.
         | 
| 809 | 
            +
             | 
| 810 | 
            +
                - 💶 **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**.
         | 
| 811 | 
            +
             | 
| 812 | 
            +
                - 🖥️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer.  
         | 
| 813 | 
            +
                        """
         | 
| 814 | 
            +
                    )
         | 
| 815 | 
            +
             | 
| 816 | 
            +
            # Background job to restart space
         | 
| 817 | 
            +
            scheduler = BackgroundScheduler()
         | 
| 818 | 
            +
            scheduler.add_job(restart_space, "interval", seconds=1800)
         | 
| 819 | 
            +
            scheduler.start()
         | 
| 820 | 
            +
             | 
| 821 | 
            +
            # Launch the app with concurrent queueing
         | 
| 822 | 
            +
            demo.queue(default_concurrency_limit=40).launch(debug=True,  # Enable Gradio debug mode
         | 
| 823 | 
            +
                    show_error=True)
         |