Add theoretical performance of a model that scores the highest on every individual task
Browse files- app.py +95 -11
- src/display/utils.py +1 -0
- src/leaderboard/read_evals.py +4 -1
app.py
CHANGED
|
@@ -17,6 +17,32 @@ import plotly.express as px
|
|
| 17 |
import plotly.graph_objects as go
|
| 18 |
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
def line_chart(dataframe):
|
| 21 |
# Separiamo i dati in base a IS_FS
|
| 22 |
df_true = dataframe[dataframe['IS_FS'] == True]
|
|
@@ -44,7 +70,7 @@ def line_chart(dataframe):
|
|
| 44 |
x=x_true,
|
| 45 |
y=y_true,
|
| 46 |
mode='markers', # solo marker, niente testo
|
| 47 |
-
name='5-
|
| 48 |
marker=dict(color='red', size=10),
|
| 49 |
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 50 |
customdata=labels_true # tutte le informazioni sul hover
|
|
@@ -78,6 +104,8 @@ def line_chart(dataframe):
|
|
| 78 |
|
| 79 |
|
| 80 |
|
|
|
|
|
|
|
| 81 |
# Define task metadata (icons, names, descriptions)
|
| 82 |
TASK_METADATA_MULTIPLECHOICE = {
|
| 83 |
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
|
|
@@ -109,6 +137,8 @@ def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
|
| 109 |
if dataframe is None or dataframe.empty:
|
| 110 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 111 |
|
|
|
|
|
|
|
| 112 |
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)
|
| 113 |
|
| 114 |
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
|
@@ -168,10 +198,10 @@ def init_leaderboard(dataframe, default_selection=None, hidden_columns=None):
|
|
| 168 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 169 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
| 170 |
filter_columns=[
|
| 171 |
-
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-
|
| 172 |
#ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
|
| 173 |
# default=[["0️⃣", "0️⃣"]]),
|
| 174 |
-
|
| 175 |
],
|
| 176 |
#filter_columns=[
|
| 177 |
# ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
|
|
@@ -195,13 +225,46 @@ def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=No
|
|
| 195 |
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
| 196 |
sorted_dataframe["rank"] = sorted_dataframe.index + 1
|
| 197 |
|
| 198 |
-
#
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
pd.set_option('display.max_colwidth', None)
|
| 207 |
#print("========================", dataframe['Model'])
|
|
@@ -222,7 +285,9 @@ def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=No
|
|
| 222 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 223 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
| 224 |
filter_columns=[
|
| 225 |
-
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-
|
|
|
|
|
|
|
| 226 |
],
|
| 227 |
bool_checkboxgroup_label="Evaluation Mode",
|
| 228 |
interactive=False
|
|
@@ -273,6 +338,8 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
| 273 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 274 |
#print(LEADERBOARD_DF.columns.tolist())
|
| 275 |
|
|
|
|
|
|
|
| 276 |
# Prepare the main interface
|
| 277 |
demo = gr.Blocks(css=custom_css)
|
| 278 |
with demo:
|
|
@@ -306,6 +373,22 @@ with demo:
|
|
| 306 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['rank', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
| 307 |
)
|
| 308 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 309 |
with gr.TabItem("📈 Charts"):
|
| 310 |
#gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")
|
| 311 |
#gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")
|
|
@@ -319,6 +402,7 @@ with demo:
|
|
| 319 |
with gr.TabItem("║", interactive=False):
|
| 320 |
gr.Markdown("", elem_classes="markdown-text")
|
| 321 |
|
|
|
|
| 322 |
# Task-specific leaderboards
|
| 323 |
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
|
| 324 |
|
|
|
|
| 17 |
import plotly.graph_objects as go
|
| 18 |
|
| 19 |
|
| 20 |
+
def mean_of_max_per_field(df):
|
| 21 |
+
"""
|
| 22 |
+
Calcola il massimo per ciascun campo e poi la media dei massimi.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
df (pd.DataFrame): DataFrame con colonne TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
float: media dei valori massimi dei campi
|
| 29 |
+
"""
|
| 30 |
+
fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]
|
| 31 |
+
|
| 32 |
+
# Controlla che tutte le colonne esistano nel DataFrame
|
| 33 |
+
missing = [f for f in fields if f not in df.columns]
|
| 34 |
+
if missing:
|
| 35 |
+
raise ValueError(f"Le seguenti colonne mancano nel DataFrame: {missing}")
|
| 36 |
+
|
| 37 |
+
# Calcola il massimo per ciascun campo
|
| 38 |
+
max_values = df[fields].max()
|
| 39 |
+
|
| 40 |
+
# Calcola la media dei massimi
|
| 41 |
+
mean_max = max_values.mean()
|
| 42 |
+
|
| 43 |
+
return mean_max
|
| 44 |
+
|
| 45 |
+
|
| 46 |
def line_chart(dataframe):
|
| 47 |
# Separiamo i dati in base a IS_FS
|
| 48 |
df_true = dataframe[dataframe['IS_FS'] == True]
|
|
|
|
| 70 |
x=x_true,
|
| 71 |
y=y_true,
|
| 72 |
mode='markers', # solo marker, niente testo
|
| 73 |
+
name='5-Shot',
|
| 74 |
marker=dict(color='red', size=10),
|
| 75 |
hovertemplate='<b>%{customdata}</b><br>#Params: %{x}<br>Performance: %{y}<extra></extra>',
|
| 76 |
customdata=labels_true # tutte le informazioni sul hover
|
|
|
|
| 104 |
|
| 105 |
|
| 106 |
|
| 107 |
+
|
| 108 |
+
|
| 109 |
# Define task metadata (icons, names, descriptions)
|
| 110 |
TASK_METADATA_MULTIPLECHOICE = {
|
| 111 |
"TE": {"icon": "📊", "name": "Textual Entailment", "tooltip": ""},
|
|
|
|
| 137 |
if dataframe is None or dataframe.empty:
|
| 138 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
| 139 |
|
| 140 |
+
#print("????????????????????????????????", mean_of_max_per_field(dataframe))
|
| 141 |
+
|
| 142 |
sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False)
|
| 143 |
|
| 144 |
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
|
|
|
| 198 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 199 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
| 200 |
filter_columns=[
|
| 201 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
| 202 |
#ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Few-Shot Learning (FS)",
|
| 203 |
# default=[["0️⃣", "0️⃣"]]),
|
| 204 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max = 100, default = [0,100], label="Select the number of parameters (B)"),
|
| 205 |
],
|
| 206 |
#filter_columns=[
|
| 207 |
# ColumnFilter("IS_FS", type="checkbox", default=False, label="5-Few-Shot")
|
|
|
|
| 225 |
sorted_dataframe = sorted_dataframe.reset_index(drop=True)
|
| 226 |
sorted_dataframe["rank"] = sorted_dataframe.index + 1
|
| 227 |
|
| 228 |
+
# Flag per sapere se la medaglia è già stata assegnata per categoria e tipo
|
| 229 |
+
large_medal_fs_assigned = False
|
| 230 |
+
medium_medal_fs_assigned = False
|
| 231 |
+
small_medal_fs_assigned = False
|
| 232 |
+
|
| 233 |
+
large_medal_0shot_assigned = False
|
| 234 |
+
medium_medal_0shot_assigned = False
|
| 235 |
+
small_medal_0shot_assigned = False
|
| 236 |
+
|
| 237 |
+
# Lista temporanea per salvare i nuovi valori della colonna Model
|
| 238 |
+
new_model_column = []
|
| 239 |
+
|
| 240 |
+
for _, row in sorted_dataframe.iterrows():
|
| 241 |
+
if row['IS_FS']: # 5-Few-Shot
|
| 242 |
+
if row["#Params (B)"] > 30 and not large_medal_fs_assigned:
|
| 243 |
+
new_model_column.append(f"{row['Model']} 7️⃣0️⃣🅱️🏆")
|
| 244 |
+
large_medal_fs_assigned = True
|
| 245 |
+
elif 10 < row["#Params (B)"] <= 30 and not medium_medal_fs_assigned:
|
| 246 |
+
new_model_column.append(f"{row['Model']} 3️⃣0️⃣🅱️🏆")
|
| 247 |
+
medium_medal_fs_assigned = True
|
| 248 |
+
elif row["#Params (B)"] <= 10 and not small_medal_fs_assigned:
|
| 249 |
+
new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🏆")
|
| 250 |
+
small_medal_fs_assigned = True
|
| 251 |
+
else:
|
| 252 |
+
new_model_column.append(row["Model"])
|
| 253 |
+
else: # 0-Shot
|
| 254 |
+
if row["#Params (B)"] > 30 and not large_medal_0shot_assigned:
|
| 255 |
+
new_model_column.append(f"{row['Model']} 7️⃣0️⃣🅱️🎖️")
|
| 256 |
+
large_medal_0shot_assigned = True
|
| 257 |
+
elif 10 < row["#Params (B)"] <= 30 and not medium_medal_0shot_assigned:
|
| 258 |
+
new_model_column.append(f"{row['Model']} 3️⃣0️⃣🅱️🎖️")
|
| 259 |
+
medium_medal_0shot_assigned = True
|
| 260 |
+
elif row["#Params (B)"] <= 10 and not small_medal_0shot_assigned:
|
| 261 |
+
new_model_column.append(f"{row['Model']} 1️⃣0️⃣🅱️🎖️")
|
| 262 |
+
small_medal_0shot_assigned = True
|
| 263 |
+
else:
|
| 264 |
+
new_model_column.append(row["Model"])
|
| 265 |
+
|
| 266 |
+
# Aggiorna la colonna Model
|
| 267 |
+
sorted_dataframe["Model"] = new_model_column
|
| 268 |
|
| 269 |
pd.set_option('display.max_colwidth', None)
|
| 270 |
#print("========================", dataframe['Model'])
|
|
|
|
| 285 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 286 |
hide_columns=hidden_columns or [c.name for c in field_list if c.hidden],
|
| 287 |
filter_columns=[
|
| 288 |
+
ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"),
|
| 289 |
+
ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100],
|
| 290 |
+
label="Select the number of parameters (B)"),
|
| 291 |
],
|
| 292 |
bool_checkboxgroup_label="Evaluation Mode",
|
| 293 |
interactive=False
|
|
|
|
| 338 |
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 339 |
#print(LEADERBOARD_DF.columns.tolist())
|
| 340 |
|
| 341 |
+
theoretical_max_combined_perf = mean_of_max_per_field(LEADERBOARD_DF)
|
| 342 |
+
|
| 343 |
# Prepare the main interface
|
| 344 |
demo = gr.Blocks(css=custom_css)
|
| 345 |
with demo:
|
|
|
|
| 373 |
hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['rank', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]]
|
| 374 |
)
|
| 375 |
|
| 376 |
+
gr.HTML(
|
| 377 |
+
f"""
|
| 378 |
+
<div style="
|
| 379 |
+
border: 2px solid #1f77b4;
|
| 380 |
+
border-radius: 10px;
|
| 381 |
+
padding: 10px;
|
| 382 |
+
background-color: #f0f8ff;
|
| 383 |
+
font-weight: bold;
|
| 384 |
+
font-size: 14px;
|
| 385 |
+
display: inline-block;
|
| 386 |
+
">
|
| 387 |
+
Theoretical performance of a model that scores the highest on every individual task: <span style="color:#d62728; font-size:18px;">{theoretical_max_combined_perf:.2f}</span>
|
| 388 |
+
</div>
|
| 389 |
+
"""
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
with gr.TabItem("📈 Charts"):
|
| 393 |
#gr.Plot(value=line_chart(LEADERBOARD_DF), label="Andamento di esempio")
|
| 394 |
#gr.Plot(value=line_chart_interactive_test(), label="Andamento interattivo")
|
|
|
|
| 402 |
with gr.TabItem("║", interactive=False):
|
| 403 |
gr.Markdown("", elem_classes="markdown-text")
|
| 404 |
|
| 405 |
+
|
| 406 |
# Task-specific leaderboards
|
| 407 |
for task, metadata in TASK_METADATA_MULTIPLECHOICE.items():
|
| 408 |
|
src/display/utils.py
CHANGED
|
@@ -48,6 +48,7 @@ auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B
|
|
| 48 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 49 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
| 50 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
|
|
|
| 51 |
|
| 52 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 53 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
|
| 48 |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
| 49 |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
| 50 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
| 51 |
+
#auto_eval_column_dict.append(["submitted_time", ColumnContent, ColumnContent("Submitted time", "date", False)])
|
| 52 |
|
| 53 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 54 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -7,6 +7,7 @@ from dataclasses import dataclass, field
|
|
| 7 |
import dateutil
|
| 8 |
import numpy as np
|
| 9 |
from typing import Dict, Union
|
|
|
|
| 10 |
|
| 11 |
#from get_model_info import num_params
|
| 12 |
from src.display.formatting import make_clickable_model
|
|
@@ -23,6 +24,7 @@ class EvalResult:
|
|
| 23 |
org: str
|
| 24 |
model: str
|
| 25 |
revision: str # commit hash, "" if main
|
|
|
|
| 26 |
results: Dict[str, Union[float, int]] # float o int
|
| 27 |
average_CPS: float
|
| 28 |
is_5fewshot: bool
|
|
@@ -119,7 +121,8 @@ class EvalResult:
|
|
| 119 |
still_on_hub=still_on_hub,
|
| 120 |
architecture=architecture,
|
| 121 |
num_params=num_params,
|
| 122 |
-
rank = 0
|
|
|
|
| 123 |
)
|
| 124 |
|
| 125 |
'''
|
|
|
|
| 7 |
import dateutil
|
| 8 |
import numpy as np
|
| 9 |
from typing import Dict, Union
|
| 10 |
+
from datetime import datetime
|
| 11 |
|
| 12 |
#from get_model_info import num_params
|
| 13 |
from src.display.formatting import make_clickable_model
|
|
|
|
| 24 |
org: str
|
| 25 |
model: str
|
| 26 |
revision: str # commit hash, "" if main
|
| 27 |
+
#submitted_time: datetime
|
| 28 |
results: Dict[str, Union[float, int]] # float o int
|
| 29 |
average_CPS: float
|
| 30 |
is_5fewshot: bool
|
|
|
|
| 121 |
still_on_hub=still_on_hub,
|
| 122 |
architecture=architecture,
|
| 123 |
num_params=num_params,
|
| 124 |
+
rank = 0,
|
| 125 |
+
#submitted_time=config.get("submitted_time", ""),
|
| 126 |
)
|
| 127 |
|
| 128 |
'''
|