Refactor: Move inline styles from Python/HTML to CSS file
Browse files- app.py +12 -62
- src/display/css_html_js.py +63 -0
app.py
CHANGED
|
@@ -415,23 +415,12 @@ def restart_space():
|
|
| 415 |
def create_title_html():
|
| 416 |
"""Function for title HTML."""
|
| 417 |
return """
|
| 418 |
-
<div
|
| 419 |
-
<h1
|
| 420 |
-
margin: 0 auto;
|
| 421 |
-
font-weight: 900;
|
| 422 |
-
font-size: 2.5em;
|
| 423 |
-
letter-spacing: 2px;
|
| 424 |
-
text-transform: uppercase;
|
| 425 |
-
background: linear-gradient(90deg, #1f77b4, #00c6ff);
|
| 426 |
-
-webkit-background-clip: text;
|
| 427 |
-
-webkit-text-fill-color: transparent;
|
| 428 |
-
text-shadow: 2px 2px 8px rgba(0,0,0,0.2);
|
| 429 |
-
">
|
| 430 |
EVALITA-LLM Leaderboard
|
| 431 |
</h1>
|
| 432 |
-
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank"
|
| 433 |
-
|
| 434 |
-
<svg xmlns="http://www.w3.org/2000/svg" width="22" height="22" fill="#1f77b4" viewBox="0 0 24 24">
|
| 435 |
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
|
| 436 |
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
|
| 437 |
</svg>
|
|
@@ -508,64 +497,25 @@ def create_gradio_interface():
|
|
| 508 |
# Labels dei campi affiancate
|
| 509 |
|
| 510 |
with gr.Row():
|
| 511 |
-
# Labels dei campi affiancate
|
| 512 |
gr.HTML(f"""
|
| 513 |
-
<div
|
| 514 |
-
|
| 515 |
-
">
|
| 516 |
-
<div style="
|
| 517 |
-
border: 2px solid #1f77b4; border-radius: 8px; padding: 4px 8px;
|
| 518 |
-
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
| 519 |
-
text-align: center;
|
| 520 |
-
display: flex; align-items: center; justify-content: center;
|
| 521 |
-
min-height: 28px; white-space: nowrap;
|
| 522 |
-
" title="Total number of configurations (zero-shot and 5-few-shot) of the models evaluated in the leaderboard.">
|
| 523 |
Models tested: {len(LEADERBOARD_DF)}
|
| 524 |
</div>
|
| 525 |
-
<div
|
| 526 |
-
border: 2px solid #1f77b4; border-radius: 8px; padding: 4px 8px;
|
| 527 |
-
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
| 528 |
-
text-align: center;
|
| 529 |
-
display: flex; align-items: center; justify-content: center;
|
| 530 |
-
min-height: 28px; white-space: nowrap;
|
| 531 |
-
" title="Average accuracy of the evaluated model">
|
| 532 |
Avg combined perf.: {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].mean():.2f}
|
| 533 |
</div>
|
| 534 |
-
<div
|
| 535 |
-
border: 2px solid #1f77b4; border-radius: 8px; padding: 4px 8px;
|
| 536 |
-
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
| 537 |
-
text-align: center;
|
| 538 |
-
display: flex; align-items: center; justify-content: center;
|
| 539 |
-
min-height: 28px; white-space: nowrap;
|
| 540 |
-
" title="Standard deviation of the evaluated models' performance.">
|
| 541 |
Std. Dev. {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].std():.2f}
|
| 542 |
</div>
|
| 543 |
-
<div
|
| 544 |
-
border: 2px solid #1f77b4; border-radius: 8px; padding: 4px 8px;
|
| 545 |
-
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
| 546 |
-
text-align: center;
|
| 547 |
-
display: flex; align-items: center; justify-content: center;
|
| 548 |
-
min-height: 28px; white-space: nowrap;
|
| 549 |
-
" title="Best evaluated model.">
|
| 550 |
Best model: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Model']}
|
| 551 |
</div>
|
| 552 |
-
<div
|
| 553 |
-
border: 2px solid #1f77b4; border-radius: 8px; padding: 4px 8px;
|
| 554 |
-
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
| 555 |
-
text-align: center;
|
| 556 |
-
display: flex; align-items: center; justify-content: center;
|
| 557 |
-
min-height: 28px; white-space: nowrap;
|
| 558 |
-
" title="Accuracy of the best evaluated model.">
|
| 559 |
Best model accuracy: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Avg. Comb. Perf. ⬆️']:.2f}
|
| 560 |
</div>
|
| 561 |
-
<div
|
| 562 |
-
|
| 563 |
-
background-color: #f0f8ff; font-weight: bold; font-size: 12px;
|
| 564 |
-
text-align: center;
|
| 565 |
-
display: flex; align-items: center; justify-content: center;
|
| 566 |
-
min-height: 28px; white-space: nowrap;
|
| 567 |
-
" title="Maximum achievable accuracy based on the highest performance for each task by any model in the leaderboard.">
|
| 568 |
-
Theoretical max: {theoretical_max_combined_perf:.2f}
|
| 569 |
</div>
|
| 570 |
</div>
|
| 571 |
""")
|
|
|
|
| 415 |
def create_title_html():
|
| 416 |
"""Function for title HTML."""
|
| 417 |
return """
|
| 418 |
+
<div class="title-header">
|
| 419 |
+
<h1 class="title-text">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
EVALITA-LLM Leaderboard
|
| 421 |
</h1>
|
| 422 |
+
<a href="https://huggingface.co/spaces/mii-llm/open_ita_llm_leaderboard" target="_blank" class="title-link">
|
| 423 |
+
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
|
|
|
|
| 424 |
<path d="M3.9 12a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42a3 3 0 1 0 4.24 4.24l3.54-3.54a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42z"/>
|
| 425 |
<path d="M20.1 12a5 5 0 0 1-7.07 7.07l-1.41-1.41 1.41-1.41 1.42 1.42a3 3 0 1 0-4.24-4.24l-3.54 3.54a5 5 0 0 1 7.07-7.07l1.41 1.41-1.41 1.41-1.42-1.42z"/>
|
| 426 |
</svg>
|
|
|
|
| 497 |
# Labels dei campi affiancate
|
| 498 |
|
| 499 |
with gr.Row():
|
|
|
|
| 500 |
gr.HTML(f"""
|
| 501 |
+
<div class="performance-metrics">
|
| 502 |
+
<div class="metric-label" title="Total number of configurations (zero-shot and 5-few-shot) of the models evaluated in the leaderboard.">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
Models tested: {len(LEADERBOARD_DF)}
|
| 504 |
</div>
|
| 505 |
+
<div class="metric-label" title="Average accuracy of the evaluated models.">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 506 |
Avg combined perf.: {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].mean():.2f}
|
| 507 |
</div>
|
| 508 |
+
<div class="metric-label" title="Standard deviation of the evaluated models' performance.">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 509 |
Std. Dev. {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].std():.2f}
|
| 510 |
</div>
|
| 511 |
+
<div class="metric-label" title="Best evaluated model.">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 512 |
Best model: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Model']}
|
| 513 |
</div>
|
| 514 |
+
<div class="metric-label" title="Accuracy of the best evaluated model.">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 515 |
Best model accuracy: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Avg. Comb. Perf. ⬆️']:.2f}
|
| 516 |
</div>
|
| 517 |
+
<div class="metric-label" title="Maximum achievable accuracy based on the highest performance for each task by any model in the leaderboard.">
|
| 518 |
+
Ideal model: {theoretical_max_combined_perf:.2f}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
</div>
|
| 520 |
</div>
|
| 521 |
""")
|
src/display/css_html_js.py
CHANGED
|
@@ -1,5 +1,67 @@
|
|
| 1 |
custom_css = """
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
.markdown-text {
|
| 4 |
font-size: 16px !important;
|
| 5 |
}
|
|
@@ -120,3 +182,4 @@ get_window_url_params = """
|
|
| 120 |
}
|
| 121 |
"""
|
| 122 |
|
|
|
|
|
|
| 1 |
custom_css = """
|
| 2 |
|
| 3 |
+
/* Title header styles */
|
| 4 |
+
.title-header {
|
| 5 |
+
display: flex;
|
| 6 |
+
align-items: center;
|
| 7 |
+
position: relative;
|
| 8 |
+
width: 100%;
|
| 9 |
+
height: 60px;
|
| 10 |
+
padding: 10px 0;
|
| 11 |
+
}
|
| 12 |
+
|
| 13 |
+
.title-text {
|
| 14 |
+
margin: 0 auto;
|
| 15 |
+
font-weight: 900;
|
| 16 |
+
font-size: 2.5em;
|
| 17 |
+
letter-spacing: 2px;
|
| 18 |
+
text-transform: uppercase;
|
| 19 |
+
background: linear-gradient(90deg, #1f77b4, #00c6ff);
|
| 20 |
+
-webkit-background-clip: text;
|
| 21 |
+
-webkit-text-fill-color: transparent;
|
| 22 |
+
text-shadow: 2px 2px 8px rgba(0,0,0,0.2);
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
.title-link {
|
| 26 |
+
position: absolute;
|
| 27 |
+
right: 0;
|
| 28 |
+
display: inline-flex;
|
| 29 |
+
align-items: center;
|
| 30 |
+
gap: 6px;
|
| 31 |
+
text-decoration: none;
|
| 32 |
+
color: #1f77b4;
|
| 33 |
+
font-weight: 600;
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
.title-link svg {
|
| 37 |
+
width: 22px;
|
| 38 |
+
height: 22px;
|
| 39 |
+
fill: #1f77b4;
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
/* Performance metrics labels */
|
| 43 |
+
.performance-metrics {
|
| 44 |
+
display: flex;
|
| 45 |
+
justify-content: flex-start;
|
| 46 |
+
width: 100%;
|
| 47 |
+
gap: 5px;
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
.metric-label {
|
| 51 |
+
border: 2px solid #1f77b4;
|
| 52 |
+
border-radius: 8px;
|
| 53 |
+
padding: 4px 8px;
|
| 54 |
+
background-color: #f0f8ff;
|
| 55 |
+
font-weight: bold;
|
| 56 |
+
font-size: 12px;
|
| 57 |
+
text-align: center;
|
| 58 |
+
display: flex;
|
| 59 |
+
align-items: center;
|
| 60 |
+
justify-content: center;
|
| 61 |
+
min-height: 28px;
|
| 62 |
+
white-space: nowrap;
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
.markdown-text {
|
| 66 |
font-size: 16px !important;
|
| 67 |
}
|
|
|
|
| 182 |
}
|
| 183 |
"""
|
| 184 |
|
| 185 |
+
|