import gradio as gr from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns import pandas as pd from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from functools import lru_cache import logging import os from src.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, \ LLM_BENCHMARKS_TEXT, TITLE from src.tasks import TASK_DESCRIPTIONS, MEASURE_DESCRIPTION from src.display.css_html_js import custom_css from src.display.utils import BENCHMARK_COLS, COLS, EVAL_COLS, EVAL_TYPES, AutoEvalColumn, ModelType, fields, \ WeightType, Precision from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_evaluation_queue_df, get_leaderboard_df from src.submission.submit import add_new_eval import matplotlib.pyplot as plt import re import plotly.express as px import plotly.graph_objects as go import numpy as np import requests # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # EVALITA results BASELINES = { "TE": 71.00, "SA": 66.38, "HS": 80.88, "AT": 82.40, "WIC": 85.00, "LS": 38.82, "SU": 38.91, "NER": 88.00, "REL": 62.99 } # GPT-4o results REFERENCES = { "NER": 79.11, "REL": 63.32, "LS": 59.25, "SU": 33.04 } TASK_METADATA_MULTIPLECHOICE = { "TE": {"icon": "πŸ“Š", "name": "Textual Entailment", "tooltip": ""}, "SA": {"icon": "πŸ˜ƒ", "name": "Sentiment Analysis", "tooltip": ""}, "HS": {"icon": "⚠️", "name": "Hate Speech", "tooltip": ""}, "AT": {"icon": "πŸ₯", "name": "Admission Test", "tooltip": ""}, "WIC": {"icon": "πŸ”€", "name": "Word in Context", "tooltip": ""}, "FAQ": {"icon": "❓", "name": "Frequently Asked Questions", "tooltip": ""} } TASK_METADATA_GENERATIVE = { "LS": {"icon": "πŸ”„", "name": "Lexical Substitution", "tooltip": ""}, "SU": {"icon": "πŸ“", "name": "Summarization", "tooltip": ""}, "NER": {"icon": "🏷️", "name": "Named Entity Recognition", "tooltip": ""}, "REL": {"icon": "πŸ”—", "name": "Relation Extraction", "tooltip": ""}, } # Function to send a Slack notification for a new model submission for evaluation def send_slack_notification(model_name, user_name, user_affiliation): # Insert your Slack webhook URL here webhook_url = os.getenv("WEBHOOK_URL") # Create the messag to be sent to Slack message = { "text": f"New model submission for EVALITA-LLM leaderboard:\n\n" f"**Model Name**: {model_name}\n" f"**User**: {user_name}\n" f"**Affiliation**: {user_affiliation}\n" f"Check out the model on HuggingFace: https://huggingface.co/{model_name}" } # Send the message to Slack response = requests.post(webhook_url, json=message) # Check if the request was successful and return the appropriate message if response.status_code == 200: return "βœ… **Notification sent successfully!**" else: return f"❌ **Failed to send notification**: {response.text}" # Funcion to validate the model submission and send the request for processing def validate_and_submit_request(model_name, user_email, user_affiliation): # Check if model name is provided and not empt if not model_name or not model_name.strip(): return "❌ **Error:** Model name is required." # Check if user email is provided and not empty if not user_email or not user_email.strip(): return "❌ **Error:** Email address is required." # Validate email format using regex email_regex = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$' if not re.match(email_regex, user_email.strip()): return "❌ **Error:** Invalid email format. Please enter a valid email address." # Check if user affiliation is provided and not empty if not user_affiliation or not user_affiliation.strip(): return "❌ **Error:** Affiliation is required." # Check if model name follows the correct format (organization/model-name) if "/" not in model_name: return "❌ **Error:** Model name must be in format 'organization/model-name' (e.g., 'microsoft/DialoGPT-medium')." # Check if the model name contains only valid characters if not re.match(r'^[a-zA-Z0-9._/-]+$', model_name): return "❌ **Error:** Model name contains invalid characters." slack_response = send_slack_notification(model_name.strip(), user_email.strip(), user_affiliation.strip()) # Return the Slack response (success or failure message) return slack_response # Funzione per calcolare la sensibilitΓ  del prompt (PSI) def calculate_prompt_sensitivity(dataframe, tasks, prompt_ids): # Elenco dei task generativi generative_tasks = ["LS", "SU", "NER", "REL"] cv_per_task = [] # Lista per memorizzare il CV per ogni task for task in tasks: prompt_col = f"{task} Best Prompt Id" task_accuracies = [] # Lista per memorizzare le accuratezze dei prompt per un task for pid in prompt_ids: pid_int = int(pid) # Applicazione dei filtri sui prompt per ogni task if pid_int <= 6 and task in generative_tasks: # Prompt 1-6 solo per task non generativi continue # Ignoriamo i prompt 1-6 per i task generativi elif pid_int in [7, 8] and task != "SU": # Prompt 7-8 solo per il task SU continue # Ignoriamo i prompt 7-8 per task diversi da SU elif pid_int in [9, 10] and task not in ["LS", "NER", "REL"]: # Prompt 9-10 solo per LS, NER, REL continue # Ignoriamo i prompt 9-10 per task che non sono LS, NER, o REL # Calcolo della percentuale di modelli che hanno ottenuto il miglior prompt per il task total = len(dataframe[prompt_col].dropna()) count = (dataframe[prompt_col] == pid).sum() accuracy = (count / total * 100) if total > 0 else 0 task_accuracies.append(accuracy) # Calcoliamo la media e la deviazione standard delle accuratezze per il task if task_accuracies: mean_acc = np.mean(task_accuracies) std_acc = np.std(task_accuracies) # Calcoliamo il Coefficiente di Variazione (CV) solo se la media Γ¨ maggiore di 0 if mean_acc > 0: cv = std_acc / mean_acc cv_per_task.append(cv) else: cv_per_task.append(0) else: cv_per_task.append(0) # Se non ci sono dati per il task, CV Γ¨ 0 # Calcola la media dei CV mean_cv = np.mean(cv_per_task) if cv_per_task else 0 # Normalizza il CV per ottenere il PSI if mean_cv >= 0.5: psi = 1.0 else: psi = mean_cv / 0.5 return psi, mean_cv, cv_per_task def map_prompt_ids_for_generation(dataframe): """ Map original prompt IDs (1 or 2) to their corresponding generative prompt IDs. - For task 'SU': 1 -> 7, 2 -> 8 - For tasks 'NER', 'REL', 'LS': 1 -> 9, 2 -> 10 """ # Mapping for SU task task = "SU" best_prompt_col = f"{task} Best Prompt Id" if best_prompt_col in dataframe.columns: dataframe[best_prompt_col] = dataframe[best_prompt_col].apply( lambda x: 7 if x == 1 else 8 ) # Mapping for other tasks for task in ["NER", "REL", "LS"]: best_prompt_col = f"{task} Best Prompt Id" if best_prompt_col in dataframe.columns: dataframe[best_prompt_col] = dataframe[best_prompt_col].apply( lambda x: 9 if x == 1 else 10 ) return dataframe def create_best_model_comparison_table(dataframe): """ Tabella interattiva con dettagli dei modelli migliori per ogni task. """ tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"] table_data = { 'Task': [], 'Best Overall Model': [], 'CPS': [], 'Best Prompt Model': [], 'Acc.': [] } ''' for task in tasks: if task in dataframe.columns: max_idx = dataframe[task].idxmax() model_raw = dataframe.loc[max_idx, 'Model'] if isinstance(model_raw, str) and '<' in model_raw: match = re.search(r'>([^<]+)<', model_raw) model_name = match.group(1) if match else model_raw else: model_name = str(model_raw) # Estraiamo il valore di "Best Prompt" per il task specifico best_prompt_column = f"{task} Best Prompt" best_prompt_value = dataframe.loc[max_idx, best_prompt_column] print(best_prompt_value) table_data['Task'].append(task) table_data['Model'].append(model_name) table_data['Comb. Perf.'].append(f"{dataframe.loc[max_idx, task]:.2f}") table_data['Best Prompt'].append(f"{best_prompt_value:.2f}") # Aggiungiamo il valore del Best Prompt table_data['Params (B)'].append(f"{dataframe.loc[max_idx, '#Params (B)']:.1f}") ''' for task in tasks: if task in dataframe.columns: # Trova l'indice del modello che ha il miglior punteggio sulla combinazione di prompt max_idx = dataframe[task].idxmax() model_raw = dataframe.loc[max_idx, 'Model'] # Estrae il nome del modello se Γ¨ formattato con simboli '<>' if isinstance(model_raw, str) and '<' in model_raw: match = re.search(r'>([^<]+)<', model_raw) model_name = match.group(1) if match else model_raw else: model_name = str(model_raw) # Estrai il valore di "Comb. Perf." (la performance media) comb_perf_value = dataframe.loc[max_idx, task] # Estrai il valore del miglior prompt per il task best_prompt_column = f"{task} Best Prompt" best_prompt_value = dataframe.loc[max_idx, best_prompt_column] # Trova il modello che ha avuto il miglior punteggio con il miglior prompt best_prompt_idx = dataframe[best_prompt_column].idxmax() best_prompt_model_raw = dataframe.loc[best_prompt_idx, 'Model'] if isinstance(best_prompt_model_raw, str) and '<' in best_prompt_model_raw: match = re.search(r'>([^<]+)<', best_prompt_model_raw) best_prompt_model = match.group(1) if match else best_prompt_model_raw else: best_prompt_model = str(best_prompt_model_raw) # Estrai l'accuratezza del modello con il miglior prompt best_prompt_accuracy = dataframe.loc[best_prompt_idx, best_prompt_column] # Aggiungi i dati alla tabella table_data['Task'].append(task) table_data['Best Overall Model'].append(model_name) table_data['CPS'].append(f"{comb_perf_value:.2f}") table_data['Best Prompt Model'].append(best_prompt_model) table_data['Acc.'].append(f"{best_prompt_accuracy:.2f}") fig = go.Figure(data=[go.Table( columnwidth=[40, 200, 40, 200, 40], # larghezze proporzionali header=dict( values=[f'{col}' for col in table_data.keys()], fill_color=['#2171b5', '#2171b5', '#2171b5', '#4292c6', '#4292c6'], #fill_color='#005f87', font=dict(color='white', size=12, family='Arial'), align='center', height=30 ), cells=dict( values=list(table_data.values()), fill_color=[['#f0f0f0' if i % 2 == 0 else 'white' for i in range(len(table_data['Task']))]], font=dict(color='#2c3e50', size=11, family='Arial'), align=['center', 'left', 'center', 'left', 'center'], height=30 ) )]) fig.update_layout( title={'text': "Top Model per Task: CPS & Best Prompt", 'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}}, font=dict(family="Arial", size=11), # allinea font height=500, margin=dict(l=20, r=20, t=60, b=100) ) # Caption fig.add_annotation( text="Best Overall Models: Scored using the primary metric, CPS, across all prompts.
" "Best Prompt Model: Scored with the highest accuracy (unofficial) based on its best-performing prompt.
" "No single model achieves the highest performance across all tasks.", xref="paper", yref="paper", x=0.5, y=-0.20, showarrow=False, font=dict(size=11, color="gray", family="Arial"), align="center", xanchor="center" ) return fig def create_prompt_heatmap(dataframe): """ Heatmap con percentuale di modelli che hanno ottenuto le best performance con ciascun prompt per ogni task, mostrando solo i valori pertinenti: - Prompt 1-6: solo per task multiple-choice - Prompt 7-8: solo per SU - Prompt 9-10: solo per LS, NER, REL """ tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"] generative_tasks = ["LS", "SU", "NER", "REL"] mc_tasks = [t for t in tasks if t not in generative_tasks] all_prompt_ids = set() for task in tasks: prompt_col = f"{task} Best Prompt Id" if prompt_col in dataframe.columns: all_prompt_ids.update(dataframe[prompt_col].dropna().unique()) prompt_ids = sorted(all_prompt_ids, key=int) matrix = [] hover_texts = [] # Calcola la sensibilitΓ  al prompt (PSI, mean_cv, cv_per_task) psi, mean_cv, cv_per_task = calculate_prompt_sensitivity(dataframe, tasks, prompt_ids) print(f"Prompt Sensitivity Index (PSI): {psi:.3f}") print(f"Mean CV: {mean_cv:.3f}") print(f"CV per task: {cv_per_task}") for pid in prompt_ids: row = [] hover_row = [] for task in tasks: prompt_col = f"{task} Best Prompt Id" pid_int = int(pid) # Filtri personalizzati if pid_int <= 6 and task in generative_tasks: row.append(None) hover_row.append("") elif pid_int in [7, 8] and task != "SU": row.append(None) hover_row.append("") elif pid_int in [9, 10] and task not in ["LS", "NER", "REL"]: row.append(None) hover_row.append("") elif prompt_col in dataframe.columns: total = len(dataframe[prompt_col].dropna()) count = (dataframe[prompt_col] == pid).sum() percentage = (count / total * 100) if total > 0 else 0 row.append(percentage) hover_row.append( f"Prompt {pid} - {task}
" f"Models: {count}/{total}
" f"Percentage: {percentage:.1f}%" ) else: row.append(0) hover_row.append(f"Prompt {pid} - {task}
No data") matrix.append(row) hover_texts.append(hover_row) # Ticktext colorati: blu per 1-6, arancio per 7-10 ticktext = [] for pid in prompt_ids: pid_int = int(pid) #if pid_int <= 6: ticktext.append(f'P{pid} ') # blu #else: #ticktext.append(f'P{pid}') # arancio fig = go.Figure(data=go.Heatmap( z=matrix, x=tasks, y=prompt_ids, colorscale=[ [0, '#f7fbff'], [0.2, '#deebf7'], [0.4, '#9ecae1'], [0.6, '#4292c6'], [0.8, '#2171b5'], [1, '#08519c'] ], text=[[f"{val:.0f}%" if val is not None else "" for val in row] for row in matrix], texttemplate="%{text}", textfont={"size": 11, "family": "Arial"}, hovertemplate='%{customdata}', customdata=hover_texts, colorbar=dict(title="% Models", ticksuffix="%"), zmin=0, zmax=100 )) fig.update_yaxes( tickmode='array', tickvals=prompt_ids, ticktext=ticktext, tickfont={"size": 11, "family": "Arial"} ) fig.update_layout( title={'text': "Most Effective Prompts per Task Across Models", 'font': {'family': 'Arial', 'size': 14, 'color': '#2c3e50'}}, xaxis_title="Task", yaxis_title="Prompt Variant", font=dict(family="Arial", size=11), # allinea font con line_chart margin=dict(b=150), template="plotly_white", dragmode=False, height=500 ) fig.add_annotation( text=f"Mean CV: {mean_cv:.2f}", # Testo in grassetto e con colore personalizzato xref="paper", yref="paper", x=0.3, y=0.85, # Posizione sotto il grafico showarrow=False, font=dict(size=14, color="#2c3e50", family="Verdana"), # Cambiato font a 'Verdana' per un aspetto piΓΉ elegante align="center", xanchor="center", bgcolor="#f7f7f7", # Aggiunta di uno sfondo chiaro per migliorare la leggibilitΓ  borderpad=5, # Padding per distanziare il testo dal bordo bordercolor="#ccc", # Colore del bordo borderwidth=1 # Larghezza del bordo ) fig.add_annotation( text=( "Prompts 1–6 are for multiple-choice tasks, 7–10 for generative tasks. Darker cells represent the number of times, across
" "all model configurations tested, that a prompt achieved the top performance. With a Mean CV (Coefficient of Variation averaged across tasks)
" "above 0.3 there is high variability between prompts, suggesting the use of multiple prompts for more stable evaluation." ), xref="paper", yref="paper", x=0.5, y=-0.35, showarrow=False, font=dict(size=11, color="gray", family="Arial"), align="center", xanchor="center" ) fig.update_xaxes(fixedrange=True) fig.update_yaxes(fixedrange=True) return fig def highlight_best_per_task(df): """Add 🟑 symbol next to the maximum value in each task column""" task_columns = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"] df = df.copy() for col in task_columns: if col in df.columns: max_val = df[col].max() df[col] = df[col].apply( lambda x: f"{x:.1f}πŸ”Ί" if x == max_val else f"{x:.1f}" ) return df def theoretical_performance(df_hash): """ Theoretical performance of a model that scores the highest on every individual task """ # This is a placeholder - you'd need to pass the actual dataframe # In practice, you'd compute this once and store it #fields = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"] return 75.0 # Placeholder value def scale_sizes(values, min_size=8, max_size=30): """Normalize sizes for scatter plot markers """ if not values: return [] vmin, vmax = min(values), max(values) if vmax == vmin: return [(min_size + max_size) / 2] * len(values) return [ min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) for val in values ] def extract_model_name(model_string): """Extract model name from HTML string.""" match = re.search(r'>([^<]+)<', model_string) return match.group(1) if match else model_string def create_line_chart(dataframe): """Create left chart.""" def scale_sizes(values, min_size=8, max_size=30): vmin, vmax = min(values), max(values) return [ min_size + (val - vmin) / (vmax - vmin) * (max_size - min_size) if vmax > vmin else (min_size + max_size) / 2 for val in values ] fig = go.Figure() # Loop su 5-Shot e 0-Shot for shot, color in [(True, "blue"), (False, "red")]: df = dataframe[dataframe["IS_FS"] == shot] x = df["#Params (B)"].tolist() y = df["Avg. Comb. Perf. ⬆️"].tolist() labels = [ re.search(r'>([^<]+)<', m).group(1) if isinstance(m, str) and re.search(r'>([^<]+)<', m) else str(m) for m in df["Model"].tolist() ] fig.add_trace(go.Scatter( x=x, y=y, mode="markers", name="5-Shot" if shot else "0-Shot", marker=dict(color=color, size=scale_sizes(x)), hovertemplate="%{customdata}
#Params: %{x}
Performance: %{y}", customdata=labels, )) # Show the best model all_y = dataframe["Avg. Comb. Perf. ⬆️"].tolist() if all_y: max_idx = all_y.index(max(all_y)) max_x = dataframe["#Params (B)"].iloc[max_idx] max_y = all_y[max_idx] max_label = re.search(r'>([^<]+)<', dataframe["Model"].iloc[max_idx]).group(1) fig.add_annotation( x=max_x, y=max_y, text=max_label, showarrow=True, arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="black", font=dict(size=11, color="black"), xshift=10, yshift=10, ax=-30, ay=-20, xanchor="right" ) # Layout fig.update_layout( title="Model Accuracy vs #Params", xaxis_title="#Params (B)", yaxis_title="Avgerage CPS", template="plotly_white", hovermode="closest", font=dict(family="Arial", size=10), dragmode=False, xaxis=dict(tickvals=[0, 25, 50, 75, 100, 125], ticktext=["0", "25", "50", "75", "100"]), yaxis=dict(tickvals=[0, 20, 40, 60, 80, 100], range=[0, 100]) ) # Caption fig.add_annotation( text="Accuracy generally rises with #Params, but smaller models
" "with 5-shot can outperform larger zero-shot models.", xref="paper", yref="paper", x=0.5, y=-0.3, showarrow=False, font=dict(size=11, color="gray"), align="center", xanchor="center" ) fig.update_xaxes(fixedrange=True, rangeslider_visible=False) fig.update_yaxes(fixedrange=True) return fig def create_boxplot_task(dataframe=None, baselines=None, references=None): """Create right chart""" tasks = ["TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"] # Dati di default se non forniti if dataframe is None: np.random.seed(42) dataframe = pd.DataFrame({task: np.random.uniform(0.4, 0.9, 20) * 100 for task in tasks}) if baselines is None: baselines = {task: np.random.randint(50, 70) for task in tasks} if references is None: references = {} colors = ["#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd", "#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"] fig = go.Figure() for i, task in enumerate(tasks): if task not in dataframe.columns: continue y_data = dataframe[task].dropna().tolist() # Boxplot fig.add_trace(go.Box( y=y_data, name=task, marker=dict(color=colors[i]), line=dict(color="black", width=2), fillcolor=colors[i], opacity=0.7, hovertemplate=""+task+"
Accuracy: %{y:.2f}%", hoverlabel=dict(bgcolor=colors[i], font_color="white"), width=0.6, whiskerwidth=0.2, quartilemethod="linear" )) # Linea baseline baseline_value = baselines.get(task) if baseline_value is not None: fig.add_shape( type="line", x0=i - 0.3, x1=i + 0.3, y0=baseline_value, y1=baseline_value, line=dict(color="black", width=2, dash="dot"), xref="x", yref="y" ) # Linea reference GPT-4o reference_value = references.get(task) if reference_value is not None: fig.add_shape( type="line", x0=i - 0.3, x1=i + 0.3, y0=reference_value, y1=reference_value, line=dict(color="red", width=2, dash="dashdot"), xref="x", yref="y" ) # Layout fig.update_layout( title="Distribution of Model Accuracy by Task", xaxis_title="Task", yaxis_title="Average CPS", template="plotly_white", boxmode="group", dragmode=False, font=dict(family="Arial", size=10), margin=dict(b=80), ) # Caption fig.add_annotation( text=( "In tasks like TE and SA, models approach the accuracy of supervised models at EVALITA (dashed black line).
" "In NER and REL they remain lower. Dashed red lines show GPT-4o reference results for generative tasks." ), xref="paper", yref="paper", x=0.5, y=-0.30, showarrow=False, font=dict(size=11, color="gray"), align="center" ) fig.update_yaxes(range=[0, 100], fixedrange=True) fig.update_xaxes(fixedrange=True) return fig def create_medal_assignments(sorted_df): """Function for medal assignment logic""" medals = { 'large_fs': False, 'medium_fs': False, 'small_fs': False, 'large_0shot': False, 'medium_0shot': False, 'small_0shot': False } new_model_column = [] for _, row in sorted_df.iterrows(): model_name = row['Model'] size = row["Size"] is_fs = row['IS_FS'] if is_fs: # 5-Few-Shot if size == "πŸ”΅πŸ”΅πŸ”΅" and not medals['large_fs']: model_name = f"{model_name} πŸ”΅πŸ”΅πŸ”΅πŸ†" medals['large_fs'] = True elif size == "πŸ”΅πŸ”΅" and not medals['medium_fs']: model_name = f"{model_name} πŸ”΅πŸ”΅πŸ†" medals['medium_fs'] = True elif size == "πŸ”΅" and not medals['small_fs']: model_name = f"{model_name} πŸ”΅πŸ†" medals['small_fs'] = True else: # 0-Shot if size == "πŸ”΅πŸ”΅πŸ”΅" and not medals['large_0shot']: model_name = f"{model_name} πŸ”΅πŸ”΅πŸ”΅πŸŽ–οΈ" medals['large_0shot'] = True elif size == "πŸ”΅πŸ”΅" and not medals['medium_0shot']: model_name = f"{model_name} πŸ”΅πŸ”΅πŸŽ–οΈ" medals['medium_0shot'] = True elif size == "πŸ”΅" and not medals['small_0shot']: model_name = f"{model_name} πŸ”΅πŸŽ–οΈ" medals['small_0shot'] = True new_model_column.append(model_name) return new_model_column def create_leaderboard_base(sorted_dataframe, field_list, hidden_columns): """Base leaderboard creation with common parameters. """ return Leaderboard( value=sorted_dataframe, datatype=[c.type for c in field_list], search_columns=[AutoEvalColumn.model.name], hide_columns=hidden_columns, filter_columns=[ ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"), ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100], label="Select the number of parameters (B)"), ], bool_checkboxgroup_label="Evaluation Mode", interactive=False, ) def init_leaderboard(dataframe, default_selection=None, hidden_columns=None): """Leaderboard initialization """ if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") # Sort and reset index sorted_dataframe = dataframe.sort_values(by="Avg. Comb. Perf. ⬆️", ascending=False).reset_index(drop=True) sorted_dataframe["Rank"] = sorted_dataframe.index + 1 # Apply medal assignments sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe) # Show the best values for tasks #sorted_dataframe = highlight_best_per_task(sorted_dataframe) field_list = fields(AutoEvalColumn) return create_leaderboard_base(sorted_dataframe, field_list, hidden_columns) def update_task_leaderboard(dataframe, default_selection=None, hidden_columns=None): """ Task-specific leaderboard update.""" if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") # Sort and reset index sorted_dataframe = dataframe.sort_values(by="Comb. Perf. ⬆️", ascending=False).reset_index(drop=True) sorted_dataframe["Rank"] = sorted_dataframe.index + 1 # Apply medal assignments sorted_dataframe["Model"] = create_medal_assignments(sorted_dataframe) field_list = fields(AutoEvalColumn) return Leaderboard( value=sorted_dataframe, datatype=[c.type for c in field_list] + [int], search_columns=[AutoEvalColumn.model.name], hide_columns=hidden_columns, filter_columns=[ ColumnFilter(AutoEvalColumn.fewshot_symbol.name, type="checkboxgroup", label="N-Shot Learning (FS)"), ColumnFilter(AutoEvalColumn.params.name, type="slider", min=0, max=100, default=[0, 100], label="Select the number of parameters (B)"), ], bool_checkboxgroup_label="Evaluation Mode", interactive=False ) def download_snapshot(repo, local_dir, max_retries=3): """Snapshot download with retry logic.""" for attempt in range(max_retries): try: logger.info(f"Downloading from {repo} to {local_dir} (attempt {attempt + 1}/{max_retries})") snapshot_download( repo_id=repo, local_dir=local_dir, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) return True except Exception as e: logger.error(f"Error downloading {repo} (attempt {attempt + 1}): {e}") if attempt == max_retries - 1: logger.error(f"Failed to download {repo} after {max_retries} attempts") return False return False def restart_space(): """Restart the Hugging Face space.""" try: logger.info("Restarting space... ") API.restart_space(repo_id=REPO_ID) except Exception as e: logger.error(f"Error restarting space: {e}") def create_title_html(): """Function for title HTML.""" return """

EVALITA-LLM Leaderboard

Open Italian LLM Leaderboard
""" def create_credits_markdown(): """Credits section.""" return """ **This project has benefited from the following support:** - 🧠 **Codebase**: Based on and extended from the Open Italian LLM Leaderboard, developed by **Alessandro Ercolani** and **Samuele Colombo**. We warmly thank them for their invaluable support and guidance in implementing this leaderboard. - πŸ’Ά **Funding**: Partially supported by the PNRR project **FAIR - Future AI Research (PE00000013)**, under the NRRP MUR program funded by **NextGenerationEU**. - πŸ–₯️ **Computation**: We gratefully acknowledge **CINECA** for granting access to the **LEONARDO** supercomputer. """ # Main initialization def initialize_app(): """Initialize the application .""" try: # Download snapshots queue_success = download_snapshot(QUEUE_REPO, EVAL_REQUESTS_PATH) results_success = download_snapshot(RESULTS_REPO, EVAL_RESULTS_PATH) if not (queue_success and results_success): logger.error("Failed to download required data") return None, None, None, None, None # Load leaderboard data leaderboard_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df( EVAL_REQUESTS_PATH, EVAL_COLS) # Calculate theoretical max performance theoretical_max = theoretical_performance(hash(str(leaderboard_df.values.tobytes()))) return leaderboard_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max except Exception as e: logger.error(f"Error initializing app: {e}") return None, None, None, None, None # Initialize data LEADERBOARD_DF, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df, theoretical_max_combined_perf = initialize_app() LEADERBOARD_DF = map_prompt_ids_for_generation(LEADERBOARD_DF) if LEADERBOARD_DF is None: # Fallback behavior logger.error("Failed to initialize app data") theoretical_max_combined_perf = 0.0 # Main Gradio interface def create_gradio_interface(): """The main Gradio interface.""" demo = gr.Blocks(css=custom_css) with demo: # Titolo gr.HTML(create_title_html()) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") # Tabs principali with gr.Tabs(elem_classes="tab-buttons") as tabs: # πŸ… Benchmark with gr.TabItem("πŸ… Benchmark"): if LEADERBOARD_DF is not None: # Labels dei campi affiancate with gr.Row(): gr.HTML(f"""
Models tested: {len(LEADERBOARD_DF)}
Avg combined perf.: {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].mean():.2f}
Std. Dev. {LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].std():.2f}
Best model: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Model']}
Best model accuracy: {LEADERBOARD_DF.loc[LEADERBOARD_DF['Avg. Comb. Perf. ⬆️'].idxmax(), 'Avg. Comb. Perf. ⬆️']:.2f}
Ideal model: {theoretical_max_combined_perf:.2f}
""") # Grafici affiancati with gr.Row(): gr.Plot(value=create_line_chart(LEADERBOARD_DF), elem_id="line-chart") gr.Plot(value=create_boxplot_task(LEADERBOARD_DF, BASELINES, REFERENCES), elem_id="line-chart") with gr.Row(): gr.Plot(value=create_prompt_heatmap(LEADERBOARD_DF), elem_id="line-chart") gr.Plot(value=create_best_model_comparison_table(LEADERBOARD_DF), elem_id="line-chart") # Leaderboard leaderboard = init_leaderboard( LEADERBOARD_DF, default_selection=['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"], hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', "Avg. Comb. Perf. ⬆️", "TE", "SA", "HS", "AT", "WIC", "FAQ", "LS", "SU", "NER", "REL"]] ) # πŸ“ About with gr.TabItem("πŸ“ About"): gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") # πŸš€ Submit a new model to evaluate with gr.TabItem("πŸš€ Submit"): gr.Markdown("# πŸ“ Model Evaluation Request", elem_classes="markdown-text") gr.Markdown(""" **Fill out the form below to request evaluation of your model on EVALITA-LLM.** Once submitted, our team will automatically receive a notification. We will evaluate the submission’s relevance for both research and commercial purposes, as well as assess its feasibility. """, elem_classes="markdown-text") with gr.Row(): with gr.Column(): # HuggingFace model name field model_name_input = gr.Textbox( label="HuggingFace Model Name", placeholder="e.g., microsoft/DialoGPT-medium", info="Enter the complete model name as it appears on HuggingFace Hub (organization/model-name)", elem_id="model-name-input" ) # User email field user_name_input = gr.Textbox( label="Your email address", placeholder="e.g., mario.rossi@example.com", info="Enter your email address for communication", elem_id="user-email-input" ) # Affiliation field user_affiliation_input = gr.Textbox( label="Affiliation", placeholder="e.g., University of Milan, Google Research, Freelancer", info="Enter your affiliation (university, company, organization)", elem_id="user-affiliation-input" ) # Submit button submit_request_button = gr.Button( "πŸ“€ Submit Request", variant="primary", elem_id="submit-request-button" ) # Result area submission_status = gr.Markdown(elem_id="submission-status") # Connect button to function submit_request_button.click( validate_and_submit_request, inputs=[model_name_input, user_name_input, user_affiliation_input], outputs=submission_status ) # Additional information with gr.Accordion("ℹ️ Additional Information", open=False): gr.Markdown(""" **What happens after submission:** 1. Your request is automatically sent to the EVALITA-LLM team 2. We verify that the model is accessible on HuggingFace 3. We contact you to confirm inclusion in the evaluation 4. The model is added to the evaluation queue **Model requirements:** - Model must be publicly accessible on HuggingFace Hub - Must be compatible with the EleutherAI/lm-evaluation-harness framework - Must have a license that allows evaluation **Evaluation tasks:** Your model will be evaluated on all tasks: TE, SA, HS, AT, WIC, FAQ, LS, SU, NER, REL. """, elem_classes="markdown-text") # Separators with gr.TabItem("β•‘", interactive=False): gr.Markdown("", elem_classes="markdown-text") # Task-specific tabs (Multiple Choice) if LEADERBOARD_DF is not None: for task, metadata in TASK_METADATA_MULTIPLECHOICE.items(): with gr.TabItem(f"{metadata['icon']}{task}"): task_description = TASK_DESCRIPTIONS.get(task, "Description not available.") gr.Markdown(task_description, elem_classes="markdown-text") leaderboard_task = update_task_leaderboard( LEADERBOARD_DF.rename(columns={ f"{task} Prompt Average": "Prompt Average", f"{task} Prompt Std": "Prompt Std", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Comb. Perf. ⬆️" }), default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'], hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id']] ) # Separators with gr.TabItem("β”‚", interactive=False): gr.Markdown("", elem_classes="markdown-text") # Task-specific tabs (Generative) if LEADERBOARD_DF is not None: for task, metadata in TASK_METADATA_GENERATIVE.items(): with gr.TabItem(f"{metadata['icon']}{task}"): task_description = TASK_DESCRIPTIONS.get(task, "Description not available.") gr.Markdown(task_description, elem_classes="markdown-text") leaderboard_task = update_task_leaderboard( LEADERBOARD_DF.rename(columns={ f"{task} Prompt Average": "Prompt Average", f"{task} Prompt Std": "Prompt Std", f"{task} Best Prompt": "Best Prompt", f"{task} Best Prompt Id": "Best Prompt Id", task: "Comb. Perf. ⬆️" }), default_selection=['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id'], hidden_columns=[col for col in LEADERBOARD_DF.columns if col not in ['Rank', 'Size', 'FS', 'Model', 'Comb. Perf. ⬆️', 'Prompt Average', 'Prompt Std', 'Best Prompt', 'Best Prompt Id']] ) # Citation e Credits with gr.Accordion("πŸ“™ Citation", open=False): gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True ) with gr.Accordion("πŸ“™ Credits", open=False): gr.Markdown(create_credits_markdown()) return demo # Create and configure the demo demo = create_gradio_interface() # Background scheduler for space restart scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() # Launch configuration if __name__ == "__main__": demo.queue(default_concurrency_limit=40).launch( debug=True, show_error=True )