from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd from src.about import Tasks def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False ## Leaderboard columns auto_eval_column_dict = [] # Init #auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) auto_eval_column_dict.append(["rank", ColumnContent, ColumnContent("Rank", "number", True, never_hidden=True)]) auto_eval_column_dict.append(["size_symbol", ColumnContent, ColumnContent("Size", "number", True, never_hidden=True)]) auto_eval_column_dict.append(["fewshot_symbol", ColumnContent, ColumnContent("FS", "str", True, never_hidden=True)]) auto_eval_column_dict.append(["is_5fewshot", ColumnContent, ColumnContent("IS_FS", "bool", True)]) auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) #auto_eval_column_dict.append(["fewshot", ColumnContent, ColumnContent("Few-Shot", "str", True)]) #Scores auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Avg. Comb. Perf. ⬆️", "number", True)]) for task in Tasks: auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]) # Model information #auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) #auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) #auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) #auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) #auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) #auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❀️", "number", False)]) #auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) #auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) #auto_eval_column_dict.append(["submitted_time", ColumnContent, ColumnContent("Submitted time", "date", False)]) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) #revision = ColumnContent("revision", "str", True) #private = ColumnContent("private", "bool", True) #precision = ColumnContent("precision", "str", True) #weight_type = ColumnContent("weight_type", "str", "Original") #status = ColumnContent("status", "str", True) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): PT = ModelDetails(name="pretrained", symbol="🟒") FT = ModelDetails(name="fine-tuned", symbol="πŸ”Ά") IFT = ModelDetails(name="instruction-tuned", symbol="β­•") RL = ModelDetails(name="RL-tuned", symbol="🟦") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_str(type): if "fine-tuned" in type or "πŸ”Ά" in type: return ModelType.FT if "pretrained" in type or "🟒" in type: return ModelType.PT if "RL-tuned" in type or "🟦" in type: return ModelType.RL if "instruction-tuned" in type or "β­•" in type: return ModelType.IFT return ModelType.Unknown @dataclass class FewShotDetails: name: str symbol: str = "" # emoji class FewShotType(Enum): ZS = FewShotDetails(name="zero-shot", symbol="πŸ…ΎοΈ") FS = FewShotDetails(name="5-few-shot", symbol="5️⃣") Unknown = FewShotDetails(name="unknown", symbol="❓") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def from_num_fewshot(is_5fewshot): """Determines FewShotType based on num_fewshot.""" if is_5fewshot is False: return FewShotType.ZS elif is_5fewshot is True: return FewShotType.FS return FewShotType.Unknown @dataclass class SizeDetails: name: str symbol: str = "" # emoji class SizeType(Enum): SMALL = SizeDetails(name="small", symbol="πŸ”΅") MEDIUM = SizeDetails(name="medium", symbol="πŸ”΅πŸ”΅") LARGE = SizeDetails(name="large", symbol="πŸ”΅πŸ”΅πŸ”΅") Unknown = SizeDetails(name="unknown", symbol="❓") def to_str(self, separator=" "): return f"{self.value.symbol}{separator}{self.value.name}" @staticmethod def num2type(size): """Determines FewShotType based on num_fewshot.""" if size <= 10: return SizeType.SMALL elif size > 10 and size <= 50: return SizeType.MEDIUM else: return SizeType.LARGE class WeightType(Enum): Adapter = ModelDetails("Adapter") Original = ModelDetails("Original") Delta = ModelDetails("Delta") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") Unknown = ModelDetails("?") def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 return Precision.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks] ''' # Nuovi valori per CPS, AVERAGE, BEST, e ID nella tabella @dataclass class NewColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False ''' ''' new_column_dict = [] # Aggiungi CPS, VERAGE, BEST, ID new_column_dict.append(["CPS", NewColumnContent, NewColumnContent("CPS", "number", True)]) new_column_dict.append(["AVERAGE", NewColumnContent, NewColumnContent("Average ⬆️", "number", True)]) new_column_dict.append(["BEST", NewColumnContent, NewColumnContent("Best Performance", "number", True)]) new_column_dict.append(["ID", NewColumnContent, NewColumnContent("ID", "str", True)]) NewColumn = make_dataclass("NewColumn", new_column_dict, frozen=True) NEW_COLS = [c.name for c in fields(NewColumn) if not c.hidden] '''