Spaces:
Running
Running
Update Space (evaluate main: b2a25b3f)
Browse files- README.md +11 -9
- app.py +1 -1
- perplexity.py +3 -2
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
title: Perplexity
|
| 3 |
-
emoji: 🤗
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
|
@@ -15,11 +15,12 @@ tags:
|
|
| 15 |
# Metric Card for Perplexity
|
| 16 |
|
| 17 |
## Metric Description
|
| 18 |
-
Given a model and an input text sequence, perplexity measures how likely the model is to generate the input text sequence.
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
## Intended Uses
|
| 25 |
Any language generation task.
|
|
@@ -30,7 +31,7 @@ The metric takes a list of text as input, as well as the name of the model used
|
|
| 30 |
|
| 31 |
```python
|
| 32 |
from evaluate import load
|
| 33 |
-
perplexity = load("perplexity")
|
| 34 |
results = perplexity.compute(input_texts=input_texts, model_id='gpt2')
|
| 35 |
```
|
| 36 |
|
|
@@ -58,7 +59,7 @@ This metric's range is 0 and up. A lower score is better.
|
|
| 58 |
### Examples
|
| 59 |
Calculating perplexity on input_texts defined here:
|
| 60 |
```python
|
| 61 |
-
perplexity = evaluate.load("perplexity")
|
| 62 |
input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
| 63 |
results = perplexity.compute(model_id='gpt2',
|
| 64 |
add_start_token=False,
|
|
@@ -72,7 +73,7 @@ print(round(results["perplexities"][0], 2))
|
|
| 72 |
```
|
| 73 |
Calculating perplexity on input_texts loaded in from a dataset:
|
| 74 |
```python
|
| 75 |
-
perplexity = evaluate.load("perplexity")
|
| 76 |
input_texts = datasets.load_dataset("wikitext",
|
| 77 |
"wikitext-2-raw-v1",
|
| 78 |
split="test")["text"][:50]
|
|
@@ -90,6 +91,7 @@ print(round(results["perplexities"][0], 2))
|
|
| 90 |
## Limitations and Bias
|
| 91 |
Note that the output value is based heavily on what text the model was trained on. This means that perplexity scores are not comparable between models or datasets.
|
| 92 |
|
|
|
|
| 93 |
|
| 94 |
## Citation
|
| 95 |
|
|
|
|
| 1 |
---
|
| 2 |
title: Perplexity
|
| 3 |
+
emoji: 🤗
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
| 6 |
sdk: gradio
|
|
|
|
| 15 |
# Metric Card for Perplexity
|
| 16 |
|
| 17 |
## Metric Description
|
| 18 |
+
Given a model and an input text sequence, perplexity measures how likely the model is to generate the input text sequence.
|
| 19 |
+
|
| 20 |
+
As a metric, it can be used to evaluate how well the model has learned the distribution of the text it was trained on
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
In this case, the model input should be the trained model to be evaluated, and the input texts should be the text that the model was trained on.
|
| 24 |
|
| 25 |
## Intended Uses
|
| 26 |
Any language generation task.
|
|
|
|
| 31 |
|
| 32 |
```python
|
| 33 |
from evaluate import load
|
| 34 |
+
perplexity = load("perplexity", module_type="metric")
|
| 35 |
results = perplexity.compute(input_texts=input_texts, model_id='gpt2')
|
| 36 |
```
|
| 37 |
|
|
|
|
| 59 |
### Examples
|
| 60 |
Calculating perplexity on input_texts defined here:
|
| 61 |
```python
|
| 62 |
+
perplexity = evaluate.load("perplexity", module_type="metric")
|
| 63 |
input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
| 64 |
results = perplexity.compute(model_id='gpt2',
|
| 65 |
add_start_token=False,
|
|
|
|
| 73 |
```
|
| 74 |
Calculating perplexity on input_texts loaded in from a dataset:
|
| 75 |
```python
|
| 76 |
+
perplexity = evaluate.load("perplexity", module_type="metric")
|
| 77 |
input_texts = datasets.load_dataset("wikitext",
|
| 78 |
"wikitext-2-raw-v1",
|
| 79 |
split="test")["text"][:50]
|
|
|
|
| 91 |
## Limitations and Bias
|
| 92 |
Note that the output value is based heavily on what text the model was trained on. This means that perplexity scores are not comparable between models or datasets.
|
| 93 |
|
| 94 |
+
See Meister and Cotterell, ["Language Model Evaluation Beyond Perplexity"]( https://arxiv.org/abs/2106.00085) (2021) for more information about alternative model evaluation strategies.
|
| 95 |
|
| 96 |
## Citation
|
| 97 |
|
app.py
CHANGED
|
@@ -2,5 +2,5 @@ import evaluate
|
|
| 2 |
from evaluate.utils import launch_gradio_widget
|
| 3 |
|
| 4 |
|
| 5 |
-
module = evaluate.load("perplexity")
|
| 6 |
launch_gradio_widget(module)
|
|
|
|
| 2 |
from evaluate.utils import launch_gradio_widget
|
| 3 |
|
| 4 |
|
| 5 |
+
module = evaluate.load("perplexity", module_type="metric")
|
| 6 |
launch_gradio_widget(module)
|
perplexity.py
CHANGED
|
@@ -56,7 +56,7 @@ Returns:
|
|
| 56 |
max length for the perplexity computation.
|
| 57 |
Examples:
|
| 58 |
Example 1:
|
| 59 |
-
>>> perplexity = evaluate.load("perplexity")
|
| 60 |
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
| 61 |
>>> results = perplexity.compute(model_id='gpt2',
|
| 62 |
... add_start_token=False,
|
|
@@ -70,7 +70,7 @@ Examples:
|
|
| 70 |
|
| 71 |
Example 2:
|
| 72 |
>>> from datasets import load_dataset
|
| 73 |
-
>>> perplexity = evaluate.load("perplexity")
|
| 74 |
>>> input_texts = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")["text"][:10] # doctest: +SKIP
|
| 75 |
>>> input_texts = [s for s in input_texts if s!='']
|
| 76 |
>>> results = perplexity.compute(model_id='gpt2',
|
|
@@ -88,6 +88,7 @@ Examples:
|
|
| 88 |
class Perplexity(evaluate.EvaluationModule):
|
| 89 |
def _info(self):
|
| 90 |
return evaluate.EvaluationModuleInfo(
|
|
|
|
| 91 |
description=_DESCRIPTION,
|
| 92 |
citation=_CITATION,
|
| 93 |
inputs_description=_KWARGS_DESCRIPTION,
|
|
|
|
| 56 |
max length for the perplexity computation.
|
| 57 |
Examples:
|
| 58 |
Example 1:
|
| 59 |
+
>>> perplexity = evaluate.load("perplexity", module_type="metric")
|
| 60 |
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
|
| 61 |
>>> results = perplexity.compute(model_id='gpt2',
|
| 62 |
... add_start_token=False,
|
|
|
|
| 70 |
|
| 71 |
Example 2:
|
| 72 |
>>> from datasets import load_dataset
|
| 73 |
+
>>> perplexity = evaluate.load("perplexity", module_type="metric")
|
| 74 |
>>> input_texts = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")["text"][:10] # doctest: +SKIP
|
| 75 |
>>> input_texts = [s for s in input_texts if s!='']
|
| 76 |
>>> results = perplexity.compute(model_id='gpt2',
|
|
|
|
| 88 |
class Perplexity(evaluate.EvaluationModule):
|
| 89 |
def _info(self):
|
| 90 |
return evaluate.EvaluationModuleInfo(
|
| 91 |
+
module_type="metric",
|
| 92 |
description=_DESCRIPTION,
|
| 93 |
citation=_CITATION,
|
| 94 |
inputs_description=_KWARGS_DESCRIPTION,
|