Spaces:
Sleeping
Sleeping
File size: 804 Bytes
c20196f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
import whisper
from transformers import pipeline
class Voice_Analysis:
def __init__(self, emotion_model="prithivMLmods/Speech-Emotion-Classification", whisper_size="base"):
# HF pipeline for speech emotion
self.classifier = pipeline(
"audio-classification",
model=emotion_model,
feature_extractor=emotion_model
)
# Whisper for ASR
self.modelwa = whisper.load_model(whisper_size)
def detect(self, path):
"""Run emotion classification on an audio file. Returns list of dicts with label/score."""
return self.classifier(path)
def subtitles(self, path):
"""Transcribe audio to text using Whisper."""
result = self.modelwa.transcribe(path)
return result.get("text", "").strip()
|