Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,30 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
|
| 8 |
def responder(mensaje, historial):
|
| 9 |
-
|
| 10 |
-
historial = []
|
| 11 |
-
|
| 12 |
-
entradas = tokenizer.encode(mensaje + tokenizer.eos_token, return_tensors="pt")
|
| 13 |
-
salida = model.generate(
|
| 14 |
-
entradas,
|
| 15 |
-
max_length=150,
|
| 16 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 17 |
-
temperature=0.7,
|
| 18 |
-
top_p=0.9
|
| 19 |
-
)
|
| 20 |
-
respuesta = tokenizer.decode(salida[:, entradas.shape[-1]:][0], skip_special_tokens=True)
|
| 21 |
historial.append((mensaje, respuesta))
|
| 22 |
return historial, historial
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
|
| 4 |
+
# Modelos de texto e imagen
|
| 5 |
+
chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct", device_map="auto")
|
| 6 |
+
image_gen = pipeline("text-to-image", model="stabilityai/stable-diffusion-2")
|
| 7 |
|
| 8 |
def responder(mensaje, historial):
|
| 9 |
+
respuesta = chatbot(mensaje, max_new_tokens=200, temperature=0.7)[0]["generated_text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
historial.append((mensaje, respuesta))
|
| 11 |
return historial, historial
|
| 12 |
|
| 13 |
+
def generar_imagen(prompt):
|
| 14 |
+
imagen = image_gen(prompt)[0]["image"]
|
| 15 |
+
return imagen
|
| 16 |
+
|
| 17 |
+
with gr.Blocks() as demo:
|
| 18 |
+
gr.Markdown("# 🤖 Mi IA Chat + Imagen")
|
| 19 |
+
|
| 20 |
+
with gr.Tab("💬 Chat"):
|
| 21 |
+
chat = gr.Chatbot()
|
| 22 |
+
entrada = gr.Textbox()
|
| 23 |
+
entrada.submit(responder, [entrada, chat], [chat, chat])
|
| 24 |
+
|
| 25 |
+
with gr.Tab("🎨 Imagen"):
|
| 26 |
+
prompt = gr.Textbox(label="Escribe lo que quieres ver")
|
| 27 |
+
salida = gr.Image()
|
| 28 |
+
prompt.submit(generar_imagen, inputs=prompt, outputs=salida)
|
| 29 |
+
|
| 30 |
demo.launch()
|