Spaces:
				
			
			
	
			
			
					
		Running
		
			on 
			
			CPU Upgrade
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
			on 
			
			CPU Upgrade
	initial leaderboard build
Browse files- README.md +11 -6
 - app.py +561 -0
 - content.py +70 -0
 - evaluator.py +238 -0
 - requirements.txt +8 -0
 - submit_leaderboard.py +103 -0
 
    	
        README.md
    CHANGED
    
    | 
         @@ -1,12 +1,17 @@ 
     | 
|
| 1 | 
         
             
            ---
         
     | 
| 2 | 
         
            -
            title:  
     | 
| 3 | 
         
            -
            emoji:  
     | 
| 4 | 
         
            -
            colorFrom:  
     | 
| 5 | 
         
            -
            colorTo:  
     | 
| 6 | 
         
             
            sdk: gradio
         
     | 
| 7 | 
         
            -
            sdk_version: 5.43.1
         
     | 
| 8 | 
         
             
            app_file: app.py
         
     | 
| 9 | 
         
            -
            pinned:  
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 10 | 
         
             
            ---
         
     | 
| 11 | 
         | 
| 12 | 
         
             
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         
     | 
| 
         | 
|
| 1 | 
         
             
            ---
         
     | 
| 2 | 
         
            +
            title: FAIR Chemistry Leaderboard
         
     | 
| 3 | 
         
            +
            emoji: 🥇
         
     | 
| 4 | 
         
            +
            colorFrom: blue
         
     | 
| 5 | 
         
            +
            colorTo: red
         
     | 
| 6 | 
         
             
            sdk: gradio
         
     | 
| 
         | 
|
| 7 | 
         
             
            app_file: app.py
         
     | 
| 8 | 
         
            +
            pinned: true
         
     | 
| 9 | 
         
            +
            hf_oauth: true
         
     | 
| 10 | 
         
            +
            failure_strategy: rollback
         
     | 
| 11 | 
         
            +
            tags:
         
     | 
| 12 | 
         
            +
              - leaderboard
         
     | 
| 13 | 
         
            +
              - chemistry
         
     | 
| 14 | 
         
            +
              - molecules
         
     | 
| 15 | 
         
             
            ---
         
     | 
| 16 | 
         | 
| 17 | 
         
             
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         
     | 
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,561 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import datetime
         
     | 
| 2 | 
         
            +
            import json
         
     | 
| 3 | 
         
            +
            import os
         
     | 
| 4 | 
         
            +
            import tempfile
         
     | 
| 5 | 
         
            +
            from email.utils import parseaddr
         
     | 
| 6 | 
         
            +
            from typing import Dict, List, Tuple, Optional
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import gradio as gr
         
     | 
| 9 | 
         
            +
            import numpy as np
         
     | 
| 10 | 
         
            +
            import pandas as pd
         
     | 
| 11 | 
         
            +
            from apscheduler.schedulers.background import BackgroundScheduler
         
     | 
| 12 | 
         
            +
            from datasets import VerificationMode, load_dataset, Dataset
         
     | 
| 13 | 
         
            +
            from huggingface_hub import HfApi, snapshot_download
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            from content import (
         
     | 
| 16 | 
         
            +
                CITATION_BUTTON_LABEL,
         
     | 
| 17 | 
         
            +
                CITATION_BUTTON_TEXT,
         
     | 
| 18 | 
         
            +
                INTRODUCTION_TEXT,
         
     | 
| 19 | 
         
            +
                SUBMISSION_TEXT,
         
     | 
| 20 | 
         
            +
                PRE_COLUMN_NAMES,
         
     | 
| 21 | 
         
            +
                POST_COLUMN_NAMES,
         
     | 
| 22 | 
         
            +
                TITLE,
         
     | 
| 23 | 
         
            +
                TYPES,
         
     | 
| 24 | 
         
            +
                model_hyperlink,
         
     | 
| 25 | 
         
            +
            )
         
     | 
| 26 | 
         
            +
            from evaluator import evaluate
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            # Configuration constants
         
     | 
| 29 | 
         
            +
            TOKEN = os.environ.get("TOKEN", None)
         
     | 
| 30 | 
         
            +
            OWNER = "facebook"
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            # Dataset repositories
         
     | 
| 33 | 
         
            +
            INTERNAL_DATA_DATASET = f"{OWNER}/fairchem_internal"
         
     | 
| 34 | 
         
            +
            SUBMISSION_DATASET = f"{OWNER}/fairchem_leaderboard_submissions"
         
     | 
| 35 | 
         
            +
            RESULTS_DATASET = f"{OWNER}/fairchem_leaderboard_results"
         
     | 
| 36 | 
         
            +
            CONTACT_DATASET = f"{OWNER}/fairchem_leaderboard_contact_info_internal"
         
     | 
| 37 | 
         
            +
            LEADERBOARD_PATH = f"{OWNER}/fairchem_leaderboard"
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            # Initialize HuggingFace API
         
     | 
| 40 | 
         
            +
            api = HfApi()
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            # S2EF subsplits for validation and test data
         
     | 
| 43 | 
         
            +
            S2EF_SUBSPLITS = [
         
     | 
| 44 | 
         
            +
                "all",
         
     | 
| 45 | 
         
            +
                "biomolecules",
         
     | 
| 46 | 
         
            +
                "electrolytes",
         
     | 
| 47 | 
         
            +
                "metal_complexes",
         
     | 
| 48 | 
         
            +
                "neutral_organics",
         
     | 
| 49 | 
         
            +
            ]
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            # Evaluation types that are not S2EF
         
     | 
| 52 | 
         
            +
            OTHER_EVAL_TYPES = [
         
     | 
| 53 | 
         
            +
                "Ligand pocket",
         
     | 
| 54 | 
         
            +
                "Ligand strain",
         
     | 
| 55 | 
         
            +
                "Conformers",
         
     | 
| 56 | 
         
            +
                "Protonation",
         
     | 
| 57 | 
         
            +
                "IE_EA",
         
     | 
| 58 | 
         
            +
                "Distance scaling",
         
     | 
| 59 | 
         
            +
                "Spin gap",
         
     | 
| 60 | 
         
            +
            ]
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            # All evaluation types for the dropdown
         
     | 
| 63 | 
         
            +
            ALL_EVAL_TYPES = ["Validation", "Test"] + OTHER_EVAL_TYPES
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            class LeaderboardData:
         
     | 
| 67 | 
         
            +
                """
         
     | 
| 68 | 
         
            +
                Manages leaderboard data loading and processing.
         
     | 
| 69 | 
         
            +
                """
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                def __init__(self):
         
     | 
| 72 | 
         
            +
                    self._setup_data_paths()
         
     | 
| 73 | 
         
            +
                    self._load_contact_info()
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                def _setup_data_paths(self):
         
     | 
| 76 | 
         
            +
                    """
         
     | 
| 77 | 
         
            +
                    Setup target and result file paths.
         
     | 
| 78 | 
         
            +
                    """
         
     | 
| 79 | 
         
            +
                    target_data_dir = snapshot_download(
         
     | 
| 80 | 
         
            +
                        repo_id=INTERNAL_DATA_DATASET,
         
     | 
| 81 | 
         
            +
                        repo_type="dataset",
         
     | 
| 82 | 
         
            +
                        token=TOKEN,
         
     | 
| 83 | 
         
            +
                    )
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    self.target_paths = {
         
     | 
| 86 | 
         
            +
                        "Validation": f"{target_data_dir}/omol_val_labels.npz",
         
     | 
| 87 | 
         
            +
                        "Test": f"{target_data_dir}/omol_test_labels.npz",
         
     | 
| 88 | 
         
            +
                        "Distance Scaling": f"{target_data_dir}/distance_scaling_labels.json",
         
     | 
| 89 | 
         
            +
                        "Ligand pocket": f"{target_data_dir}/ligand_pocket_labels.json",
         
     | 
| 90 | 
         
            +
                        "Ligand strain": f"{target_data_dir}/ligand_strain_labels.json",
         
     | 
| 91 | 
         
            +
                        "Conformers": f"{target_data_dir}/geom_conformers_labels.json",
         
     | 
| 92 | 
         
            +
                        "Protonation": f"{target_data_dir}/protonation_energies_labels.json",
         
     | 
| 93 | 
         
            +
                        "IE_EA": f"{target_data_dir}/unoptimized_ie_ea_labels.json",
         
     | 
| 94 | 
         
            +
                        "Distance scaling": f"{target_data_dir}/distance_scaling_labels.json",
         
     | 
| 95 | 
         
            +
                        "Spin gap": f"{target_data_dir}/unoptimized_spin_gap_labels.json",
         
     | 
| 96 | 
         
            +
                    }
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                    self.result_paths = {
         
     | 
| 99 | 
         
            +
                        "Validation": "validation_s2ef.parquet",
         
     | 
| 100 | 
         
            +
                        "Test": "test_s2ef.parquet",
         
     | 
| 101 | 
         
            +
                        "Ligand pocket": "ligand_pocket.parquet",
         
     | 
| 102 | 
         
            +
                        "Ligand strain": "ligand_strain.parquet",
         
     | 
| 103 | 
         
            +
                        "Conformers": "geom_conformers.parquet",
         
     | 
| 104 | 
         
            +
                        "Protonation": "protonation.parquet",
         
     | 
| 105 | 
         
            +
                        "IE_EA": "ie_ea.parquet",
         
     | 
| 106 | 
         
            +
                        "Distance scaling": "distance_scaling.parquet",
         
     | 
| 107 | 
         
            +
                        "Spin gap": "spin_gap.parquet",
         
     | 
| 108 | 
         
            +
                    }
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                def _load_contact_info(self):
         
     | 
| 111 | 
         
            +
                    """
         
     | 
| 112 | 
         
            +
                    Load contact information dataset.
         
     | 
| 113 | 
         
            +
                    """
         
     | 
| 114 | 
         
            +
                    self.contact_infos = load_dataset(
         
     | 
| 115 | 
         
            +
                        CONTACT_DATASET,
         
     | 
| 116 | 
         
            +
                        token=TOKEN,
         
     | 
| 117 | 
         
            +
                        download_mode="force_redownload",
         
     | 
| 118 | 
         
            +
                        verification_mode=VerificationMode.NO_CHECKS,
         
     | 
| 119 | 
         
            +
                    )
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                def load_eval_data(self) -> Tuple[Dict, Dict[str, pd.DataFrame]]:
         
     | 
| 122 | 
         
            +
                    """
         
     | 
| 123 | 
         
            +
                    Load all evaluation data and return results and dataframes.
         
     | 
| 124 | 
         
            +
                    """
         
     | 
| 125 | 
         
            +
                    # Load S2EF results
         
     | 
| 126 | 
         
            +
                    s2ef_results = load_dataset(
         
     | 
| 127 | 
         
            +
                        RESULTS_DATASET,
         
     | 
| 128 | 
         
            +
                        token=TOKEN,
         
     | 
| 129 | 
         
            +
                        download_mode="force_redownload",
         
     | 
| 130 | 
         
            +
                        verification_mode=VerificationMode.NO_CHECKS,
         
     | 
| 131 | 
         
            +
                        data_files={
         
     | 
| 132 | 
         
            +
                            "Validation": os.path.join("data", self.result_paths["Validation"]),
         
     | 
| 133 | 
         
            +
                            "Test": os.path.join("data", self.result_paths["Test"]),
         
     | 
| 134 | 
         
            +
                        },
         
     | 
| 135 | 
         
            +
                    )
         
     | 
| 136 | 
         
            +
                    eval_results = dict(s2ef_results)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    # Load other evaluation types
         
     | 
| 139 | 
         
            +
                    for eval_type in OTHER_EVAL_TYPES:
         
     | 
| 140 | 
         
            +
                        eval_type_data = load_dataset(
         
     | 
| 141 | 
         
            +
                            RESULTS_DATASET,
         
     | 
| 142 | 
         
            +
                            token=TOKEN,
         
     | 
| 143 | 
         
            +
                            download_mode="force_redownload",
         
     | 
| 144 | 
         
            +
                            verification_mode=VerificationMode.NO_CHECKS,
         
     | 
| 145 | 
         
            +
                            data_files={"data": os.path.join("data", self.result_paths[eval_type])},
         
     | 
| 146 | 
         
            +
                        )
         
     | 
| 147 | 
         
            +
                        eval_results[eval_type] = eval_type_data["data"]
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                    # Generate result dataframes
         
     | 
| 150 | 
         
            +
                    results_dfs = {}
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                    # S2EF dataframes
         
     | 
| 153 | 
         
            +
                    for split in ["Validation", "Test"]:
         
     | 
| 154 | 
         
            +
                        for subsplit in S2EF_SUBSPLITS:
         
     | 
| 155 | 
         
            +
                            df_key = f"{split}_{subsplit}"
         
     | 
| 156 | 
         
            +
                            results_dfs[df_key] = self._get_s2ef_df_from_results(
         
     | 
| 157 | 
         
            +
                                eval_results, split, subsplit
         
     | 
| 158 | 
         
            +
                            )
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                    # Other evaluation dataframes
         
     | 
| 161 | 
         
            +
                    for split in OTHER_EVAL_TYPES:
         
     | 
| 162 | 
         
            +
                        results_dfs[split] = self._get_eval_df_from_results(eval_results, split)
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                    return eval_results, results_dfs
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                def _get_s2ef_df_from_results(
         
     | 
| 167 | 
         
            +
                    self, eval_results: Dict, split: str, subsplit: str
         
     | 
| 168 | 
         
            +
                ) -> pd.DataFrame:
         
     | 
| 169 | 
         
            +
                    """
         
     | 
| 170 | 
         
            +
                    Generate S2EF dataframe from evaluation results.
         
     | 
| 171 | 
         
            +
                    """
         
     | 
| 172 | 
         
            +
                    local_df = eval_results[split]
         
     | 
| 173 | 
         
            +
                    local_df = local_df.map(
         
     | 
| 174 | 
         
            +
                        lambda row: {"Model": model_hyperlink(row["url"], row["Model"])}
         
     | 
| 175 | 
         
            +
                    )
         
     | 
| 176 | 
         
            +
                    filtered_columns = (
         
     | 
| 177 | 
         
            +
                        PRE_COLUMN_NAMES
         
     | 
| 178 | 
         
            +
                        + [f"{subsplit}_energy_mae", f"{subsplit}_forces_mae"]
         
     | 
| 179 | 
         
            +
                        + POST_COLUMN_NAMES
         
     | 
| 180 | 
         
            +
                    )
         
     | 
| 181 | 
         
            +
                    df = pd.DataFrame(local_df)
         
     | 
| 182 | 
         
            +
                    avail_columns = list(df.columns)
         
     | 
| 183 | 
         
            +
                    missing_columns = list(set(filtered_columns) - set(avail_columns))
         
     | 
| 184 | 
         
            +
                    df[missing_columns] = "-"
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                    df = df[filtered_columns].round(4)
         
     | 
| 187 | 
         
            +
                    # Unit conversion
         
     | 
| 188 | 
         
            +
                    for col in df.columns:
         
     | 
| 189 | 
         
            +
                        if "mae" in col.lower():
         
     | 
| 190 | 
         
            +
                            df[col] = (df[col] * 1000).round(2)
         
     | 
| 191 | 
         
            +
                    df = df.sort_values(by=[f"{subsplit}_energy_mae"], ascending=True)
         
     | 
| 192 | 
         
            +
                    df[f"{subsplit}_energy_mae"] = df[f"{subsplit}_energy_mae"]
         
     | 
| 193 | 
         
            +
                    df[f"{subsplit}_forces_mae"] = df[f"{subsplit}_forces_mae"]
         
     | 
| 194 | 
         
            +
                    df = df.rename(
         
     | 
| 195 | 
         
            +
                        columns={
         
     | 
| 196 | 
         
            +
                            f"{subsplit}_energy_mae": "Energy MAE [meV]",
         
     | 
| 197 | 
         
            +
                            f"{subsplit}_forces_mae": "Forces MAE [meV/Å]",
         
     | 
| 198 | 
         
            +
                        }
         
     | 
| 199 | 
         
            +
                    )
         
     | 
| 200 | 
         
            +
                    return df
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                def _get_eval_df_from_results(self, eval_results: Dict, split: str) -> pd.DataFrame:
         
     | 
| 203 | 
         
            +
                    """
         
     | 
| 204 | 
         
            +
                    Generate evaluation dataframe from results.
         
     | 
| 205 | 
         
            +
                    """
         
     | 
| 206 | 
         
            +
                    local_df = eval_results[split]
         
     | 
| 207 | 
         
            +
                    local_df = local_df.map(
         
     | 
| 208 | 
         
            +
                        lambda row: {"Model": model_hyperlink(row["url"], row["Model"])}
         
     | 
| 209 | 
         
            +
                    )
         
     | 
| 210 | 
         
            +
                    eval_columns = LEADERBOARD_COLUMNS[split]
         
     | 
| 211 | 
         
            +
                    filtered_columns = PRE_COLUMN_NAMES + eval_columns + POST_COLUMN_NAMES
         
     | 
| 212 | 
         
            +
                    df = pd.DataFrame(local_df)
         
     | 
| 213 | 
         
            +
                    avail_columns = list(df.columns)
         
     | 
| 214 | 
         
            +
                    missing_columns = list(set(filtered_columns) - set(avail_columns))
         
     | 
| 215 | 
         
            +
                    df[missing_columns] = "-"
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                    df = df[filtered_columns].round(4)
         
     | 
| 218 | 
         
            +
                    # Unit conversion
         
     | 
| 219 | 
         
            +
                    for col in df.columns:
         
     | 
| 220 | 
         
            +
                        if "mae" in col.lower():
         
     | 
| 221 | 
         
            +
                            df[col] = (df[col] * 1000).round(2)
         
     | 
| 222 | 
         
            +
                    df = df.sort_values(by=[eval_columns[0]], ascending=True)
         
     | 
| 223 | 
         
            +
                    df = df.rename(columns=COLUMN_MAPPING)
         
     | 
| 224 | 
         
            +
                    return df
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
            leaderboard_data = LeaderboardData()
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
            # Column configurations for different evaluation types
         
     | 
| 230 | 
         
            +
            LEADERBOARD_COLUMNS = {
         
     | 
| 231 | 
         
            +
                "Ligand pocket": ["interaction_energy_mae", "interaction_forces_mae"],
         
     | 
| 232 | 
         
            +
                "Ligand strain": ["strain_energy_mae", "global_min_rmsd"],
         
     | 
| 233 | 
         
            +
                "Conformers": ["deltaE_mae", "ensemble_rmsd"],
         
     | 
| 234 | 
         
            +
                "Protonation": ["deltaE_mae", "rmsd"],
         
     | 
| 235 | 
         
            +
                "IE_EA": ["deltaE_mae", "deltaF_mae"],
         
     | 
| 236 | 
         
            +
                "Distance scaling": ["lr_ddE_mae", "lr_ddF_mae", "sr_ddE_mae", "sr_ddF_mae"],
         
     | 
| 237 | 
         
            +
                "Spin gap": ["deltaE_mae", "deltaF_mae"],
         
     | 
| 238 | 
         
            +
            }
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
            COLUMN_MAPPING = {
         
     | 
| 241 | 
         
            +
                "interaction_energy_mae": "Ixn Energy MAE [meV]",
         
     | 
| 242 | 
         
            +
                "interaction_forces_mae": "Ixn Forces MAE [meV/Å]",
         
     | 
| 243 | 
         
            +
                "strain_energy_mae": "Strain Energy MAE [meV]",
         
     | 
| 244 | 
         
            +
                "deltaE_mae": "\u0394Energy MAE [meV]",
         
     | 
| 245 | 
         
            +
                "deltaF_mae": "\u0394Forces MAE [meV/Å]",
         
     | 
| 246 | 
         
            +
                "ensemble_rmsd": "RMSD [Å]",
         
     | 
| 247 | 
         
            +
                "global_min_rmsd": "RMSD [Å]",
         
     | 
| 248 | 
         
            +
                "rmsd": "RMSD [Å]",
         
     | 
| 249 | 
         
            +
                "lr_ddE_mae": "\u0394Energy (LR) MAE [meV]",
         
     | 
| 250 | 
         
            +
                "lr_ddF_mae": "\u0394Forces (LR) MAE [meV/Å]",
         
     | 
| 251 | 
         
            +
                "sr_ddE_mae": "\u0394Energy (SR) MAE [meV]",
         
     | 
| 252 | 
         
            +
                "sr_ddF_mae": "\u0394Forces (SR) MAE [meV/Å]",
         
     | 
| 253 | 
         
            +
            }
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
            +
            def add_new_eval(
         
     | 
| 257 | 
         
            +
                path_to_file: str,
         
     | 
| 258 | 
         
            +
                eval_type: str,
         
     | 
| 259 | 
         
            +
                organization: str,
         
     | 
| 260 | 
         
            +
                model: str,
         
     | 
| 261 | 
         
            +
                url: str,
         
     | 
| 262 | 
         
            +
                mail: str,
         
     | 
| 263 | 
         
            +
                training_set: str,
         
     | 
| 264 | 
         
            +
                additional_info: str,
         
     | 
| 265 | 
         
            +
                profile: gr.OAuthProfile,
         
     | 
| 266 | 
         
            +
            ) -> str:
         
     | 
| 267 | 
         
            +
                """Add a new evaluation to the leaderboard."""
         
     | 
| 268 | 
         
            +
                print(f"Adding new eval of type: {eval_type}")
         
     | 
| 269 | 
         
            +
                try:
         
     | 
| 270 | 
         
            +
                    # Validate email address
         
     | 
| 271 | 
         
            +
                    _, parsed_mail = parseaddr(mail)
         
     | 
| 272 | 
         
            +
                    if "@" not in parsed_mail:
         
     | 
| 273 | 
         
            +
                        yield "⚠️ Please provide a valid email address."
         
     | 
| 274 | 
         
            +
                        return
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
                    # Check monthly submission limit (5 submissions per month)
         
     | 
| 277 | 
         
            +
                    contact_key = eval_type.replace(" ", "_")
         
     | 
| 278 | 
         
            +
                    user_submission_dates = sorted(
         
     | 
| 279 | 
         
            +
                        row["date"]
         
     | 
| 280 | 
         
            +
                        for row in leaderboard_data.contact_infos.get(contact_key, [])
         
     | 
| 281 | 
         
            +
                        if row["username"] == profile.username
         
     | 
| 282 | 
         
            +
                    )
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                    current_month = datetime.datetime.now().strftime("%Y-%m")
         
     | 
| 285 | 
         
            +
                    current_month_submissions = [
         
     | 
| 286 | 
         
            +
                        date for date in user_submission_dates if date.startswith(current_month)
         
     | 
| 287 | 
         
            +
                    ]
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    if len(current_month_submissions) >= 5:
         
     | 
| 290 | 
         
            +
                        yield f"⚠️ You have reached the monthly submission limit of 5 submissions. Please try again next month."
         
     | 
| 291 | 
         
            +
                        return
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
                    # Validate file submission
         
     | 
| 294 | 
         
            +
                    if path_to_file is None:
         
     | 
| 295 | 
         
            +
                        yield "⚠️ Please upload a file."
         
     | 
| 296 | 
         
            +
                        return
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                    if not (path_to_file.endswith(".npz") or path_to_file.endswith(".json")):
         
     | 
| 299 | 
         
            +
                        yield "⚠️ Please submit a valid npz or json file"
         
     | 
| 300 | 
         
            +
                        return
         
     | 
| 301 | 
         
            +
             
     | 
| 302 | 
         
            +
                    # Evaluate the submission
         
     | 
| 303 | 
         
            +
                    yield "⚙️ Evaluating your submission..."
         
     | 
| 304 | 
         
            +
                    metrics = evaluate(
         
     | 
| 305 | 
         
            +
                        leaderboard_data.target_paths[eval_type],
         
     | 
| 306 | 
         
            +
                        path_to_file,
         
     | 
| 307 | 
         
            +
                        eval_type,
         
     | 
| 308 | 
         
            +
                    )
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                    submission_time = datetime.datetime.today().strftime("%Y-%m-%d-%H:%M")
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                    # Upload submission file
         
     | 
| 313 | 
         
            +
                    yield "☁️ Uploading submission file..."
         
     | 
| 314 | 
         
            +
                    api.upload_file(
         
     | 
| 315 | 
         
            +
                        repo_id=SUBMISSION_DATASET,
         
     | 
| 316 | 
         
            +
                        path_or_fileobj=path_to_file,
         
     | 
| 317 | 
         
            +
                        path_in_repo=f"{organization}/{model}/submissions/{training_set}/{eval_type}_{submission_time}_{os.path.basename(path_to_file)}",
         
     | 
| 318 | 
         
            +
                        repo_type="dataset",
         
     | 
| 319 | 
         
            +
                        token=TOKEN,
         
     | 
| 320 | 
         
            +
                    )
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                    # Update leaderboard data
         
     | 
| 323 | 
         
            +
                    yield "📋 Updating leaderboard data..."
         
     | 
| 324 | 
         
            +
                    eval_results, _ = leaderboard_data.load_eval_data()
         
     | 
| 325 | 
         
            +
                    eval_entry = {
         
     | 
| 326 | 
         
            +
                        "Model": model,
         
     | 
| 327 | 
         
            +
                        "Organization": organization,
         
     | 
| 328 | 
         
            +
                        "Submission date": submission_time,
         
     | 
| 329 | 
         
            +
                        "Training Set": training_set,
         
     | 
| 330 | 
         
            +
                        "Notes": additional_info,
         
     | 
| 331 | 
         
            +
                        "url": url,
         
     | 
| 332 | 
         
            +
                    }
         
     | 
| 333 | 
         
            +
                    eval_entry.update(metrics)
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                    if eval_type not in eval_results:
         
     | 
| 336 | 
         
            +
                        eval_results[eval_type] = Dataset.from_dict(
         
     | 
| 337 | 
         
            +
                            {k: [v] for k, v in eval_entry.items()}
         
     | 
| 338 | 
         
            +
                        )
         
     | 
| 339 | 
         
            +
                    else:
         
     | 
| 340 | 
         
            +
                        eval_results[eval_type] = eval_results[eval_type].add_item(eval_entry)
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                    data_file_name = leaderboard_data.result_paths[eval_type]
         
     | 
| 343 | 
         
            +
             
     | 
| 344 | 
         
            +
                    # Upload results
         
     | 
| 345 | 
         
            +
                    yield "💾 Saving results to database..."
         
     | 
| 346 | 
         
            +
                    with tempfile.NamedTemporaryFile(suffix=".parquet") as tmp_file:
         
     | 
| 347 | 
         
            +
                        eval_results[eval_type].to_parquet(tmp_file.name)
         
     | 
| 348 | 
         
            +
                        api.upload_file(
         
     | 
| 349 | 
         
            +
                            repo_id=RESULTS_DATASET,
         
     | 
| 350 | 
         
            +
                            path_or_fileobj=tmp_file.name,
         
     | 
| 351 | 
         
            +
                            path_in_repo=f"data/{data_file_name}",
         
     | 
| 352 | 
         
            +
                            repo_type="dataset",
         
     | 
| 353 | 
         
            +
                            token=TOKEN,
         
     | 
| 354 | 
         
            +
                        )
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                    # Save contact information
         
     | 
| 357 | 
         
            +
                    contact_info = {
         
     | 
| 358 | 
         
            +
                        "model": model,
         
     | 
| 359 | 
         
            +
                        "organization": organization,
         
     | 
| 360 | 
         
            +
                        "username": profile.username,
         
     | 
| 361 | 
         
            +
                        "email": mail,
         
     | 
| 362 | 
         
            +
                        "date": submission_time,
         
     | 
| 363 | 
         
            +
                    }
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                    if contact_key not in leaderboard_data.contact_infos:
         
     | 
| 366 | 
         
            +
                        leaderboard_data.contact_infos[contact_key] = Dataset.from_dict(
         
     | 
| 367 | 
         
            +
                            {k: [v] for k, v in contact_info.items()}
         
     | 
| 368 | 
         
            +
                        )
         
     | 
| 369 | 
         
            +
                    else:
         
     | 
| 370 | 
         
            +
                        leaderboard_data.contact_infos[contact_key] = (
         
     | 
| 371 | 
         
            +
                            leaderboard_data.contact_infos[contact_key].add_item(contact_info)
         
     | 
| 372 | 
         
            +
                        )
         
     | 
| 373 | 
         
            +
             
     | 
| 374 | 
         
            +
                    leaderboard_data.contact_infos.push_to_hub(CONTACT_DATASET, token=TOKEN)
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                    success_str = f"✅ Model {model} is successfully evaluated and stored in our database.\nPlease wait an hour and refresh the leaderboard to see your results displayed."
         
     | 
| 377 | 
         
            +
                    yield success_str
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                except Exception as e:
         
     | 
| 380 | 
         
            +
                    print(f"Error during submission: {e}")
         
     | 
| 381 | 
         
            +
                    yield (
         
     | 
| 382 | 
         
            +
                        f"An error occurred, please open a discussion and indicate at what time you encountered the error.\n{e}"
         
     | 
| 383 | 
         
            +
                    )
         
     | 
| 384 | 
         
            +
             
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
            def create_dataframe_tab(
         
     | 
| 387 | 
         
            +
                tab_name: str, df: pd.DataFrame, datatype: List[str] = None
         
     | 
| 388 | 
         
            +
            ) -> gr.Tab:
         
     | 
| 389 | 
         
            +
                """
         
     | 
| 390 | 
         
            +
                Create a tab with a dataframe.
         
     | 
| 391 | 
         
            +
                """
         
     | 
| 392 | 
         
            +
                if datatype is None:
         
     | 
| 393 | 
         
            +
                    datatype = TYPES
         
     | 
| 394 | 
         
            +
             
     | 
| 395 | 
         
            +
                with gr.Tab(tab_name) as tab:
         
     | 
| 396 | 
         
            +
                    gr.Dataframe(
         
     | 
| 397 | 
         
            +
                        value=df,
         
     | 
| 398 | 
         
            +
                        datatype=datatype,
         
     | 
| 399 | 
         
            +
                        interactive=False,
         
     | 
| 400 | 
         
            +
                        column_widths=["20%"],
         
     | 
| 401 | 
         
            +
                    )
         
     | 
| 402 | 
         
            +
                return tab
         
     | 
| 403 | 
         
            +
             
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
            def create_s2ef_tabs(split: str, results_dfs: Dict[str, pd.DataFrame]) -> None:
         
     | 
| 406 | 
         
            +
                """
         
     | 
| 407 | 
         
            +
                Create S2EF tabs for a given split (Validation/Test).
         
     | 
| 408 | 
         
            +
                """
         
     | 
| 409 | 
         
            +
                subsplit_names = {
         
     | 
| 410 | 
         
            +
                    "all": "All",
         
     | 
| 411 | 
         
            +
                    "biomolecules": "Biomolecules",
         
     | 
| 412 | 
         
            +
                    "electrolytes": "Electrolytes",
         
     | 
| 413 | 
         
            +
                    "metal_complexes": "Metal Complexes",
         
     | 
| 414 | 
         
            +
                    "neutral_organics": "Neutral Organics",
         
     | 
| 415 | 
         
            +
                }
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                for subsplit, display_name in subsplit_names.items():
         
     | 
| 418 | 
         
            +
                    df_key = f"{split}_{subsplit}"
         
     | 
| 419 | 
         
            +
                    create_dataframe_tab(display_name, results_dfs[df_key])
         
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
            def create_evaluation_tabs(results_dfs: Dict[str, pd.DataFrame]) -> None:
         
     | 
| 423 | 
         
            +
                """
         
     | 
| 424 | 
         
            +
                Create evaluation tabs for non-S2EF evaluations.
         
     | 
| 425 | 
         
            +
                """
         
     | 
| 426 | 
         
            +
                eval_datatype = ["markdown", "markdown", "number", "str"]
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                for eval_type in OTHER_EVAL_TYPES:
         
     | 
| 429 | 
         
            +
                    display_name = "IE/EA" if eval_type == "IE_EA" else eval_type
         
     | 
| 430 | 
         
            +
                    create_dataframe_tab(display_name, results_dfs[eval_type], eval_datatype)
         
     | 
| 431 | 
         
            +
             
     | 
| 432 | 
         
            +
             
     | 
| 433 | 
         
            +
            def create_submission_interface() -> Tuple[gr.components.Component, ...]:
         
     | 
| 434 | 
         
            +
                """
         
     | 
| 435 | 
         
            +
                Create the submission interface components.
         
     | 
| 436 | 
         
            +
                """
         
     | 
| 437 | 
         
            +
                with gr.Accordion("Submit predictions"):
         
     | 
| 438 | 
         
            +
                    with gr.Row():
         
     | 
| 439 | 
         
            +
                        gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
         
     | 
| 440 | 
         
            +
                    with gr.Row():
         
     | 
| 441 | 
         
            +
                        with gr.Column():
         
     | 
| 442 | 
         
            +
                            model_name_textbox = gr.Textbox(label="Model name")
         
     | 
| 443 | 
         
            +
                            model_url = gr.Textbox(label="Model/Paper URL")
         
     | 
| 444 | 
         
            +
                            dataset = gr.Dropdown(
         
     | 
| 445 | 
         
            +
                                choices=["OMol-All", "OMol-4M", "UMA-459M", "Other"],
         
     | 
| 446 | 
         
            +
                                label="Training set",
         
     | 
| 447 | 
         
            +
                                interactive=True,
         
     | 
| 448 | 
         
            +
                            )
         
     | 
| 449 | 
         
            +
                            additional_info = gr.Textbox(
         
     | 
| 450 | 
         
            +
                                label="Additional info (cutoff radius, # of params, etc.)"
         
     | 
| 451 | 
         
            +
                            )
         
     | 
| 452 | 
         
            +
                            organization = gr.Textbox(label="Organization")
         
     | 
| 453 | 
         
            +
                            mail = gr.Textbox(
         
     | 
| 454 | 
         
            +
                                label="Contact email (will be stored privately, & used if there is an issue with your submission)"
         
     | 
| 455 | 
         
            +
                            )
         
     | 
| 456 | 
         
            +
                        with gr.Column():
         
     | 
| 457 | 
         
            +
                            file_output = gr.File()
         
     | 
| 458 | 
         
            +
                            with gr.Row():
         
     | 
| 459 | 
         
            +
                                eval_type = gr.Dropdown(
         
     | 
| 460 | 
         
            +
                                    choices=ALL_EVAL_TYPES,
         
     | 
| 461 | 
         
            +
                                    label="Eval Type",
         
     | 
| 462 | 
         
            +
                                    interactive=True,
         
     | 
| 463 | 
         
            +
                                )
         
     | 
| 464 | 
         
            +
                                with gr.Column():
         
     | 
| 465 | 
         
            +
                                    gr.LoginButton()
         
     | 
| 466 | 
         
            +
                                with gr.Column():
         
     | 
| 467 | 
         
            +
                                    submit_button = gr.Button("Submit Eval")
         
     | 
| 468 | 
         
            +
                            submission_result = gr.Textbox(label="Status")
         
     | 
| 469 | 
         
            +
             
     | 
| 470 | 
         
            +
                return (
         
     | 
| 471 | 
         
            +
                    submit_button,
         
     | 
| 472 | 
         
            +
                    file_output,
         
     | 
| 473 | 
         
            +
                    eval_type,
         
     | 
| 474 | 
         
            +
                    organization,
         
     | 
| 475 | 
         
            +
                    model_name_textbox,
         
     | 
| 476 | 
         
            +
                    model_url,
         
     | 
| 477 | 
         
            +
                    mail,
         
     | 
| 478 | 
         
            +
                    dataset,
         
     | 
| 479 | 
         
            +
                    additional_info,
         
     | 
| 480 | 
         
            +
                    submission_result,
         
     | 
| 481 | 
         
            +
                )
         
     | 
| 482 | 
         
            +
             
     | 
| 483 | 
         
            +
             
     | 
| 484 | 
         
            +
            def create_interface() -> gr.Blocks:
         
     | 
| 485 | 
         
            +
                """
         
     | 
| 486 | 
         
            +
                Create the complete Gradio interface.
         
     | 
| 487 | 
         
            +
                """
         
     | 
| 488 | 
         
            +
                # Load data
         
     | 
| 489 | 
         
            +
                _, results_dfs = leaderboard_data.load_eval_data()
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                demo = gr.Blocks()
         
     | 
| 492 | 
         
            +
                with demo:
         
     | 
| 493 | 
         
            +
                    gr.HTML(TITLE)
         
     | 
| 494 | 
         
            +
                    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
         
     | 
| 495 | 
         
            +
             
     | 
| 496 | 
         
            +
                    # Citation section
         
     | 
| 497 | 
         
            +
                    with gr.Row():
         
     | 
| 498 | 
         
            +
                        with gr.Accordion("📙 Citation", open=False):
         
     | 
| 499 | 
         
            +
                            gr.Markdown(CITATION_BUTTON_LABEL)
         
     | 
| 500 | 
         
            +
                            gr.Markdown(CITATION_BUTTON_TEXT)
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                    # S2EF Results tabs
         
     | 
| 503 | 
         
            +
                    with gr.Tab("Test"):
         
     | 
| 504 | 
         
            +
                        create_s2ef_tabs("Test", results_dfs)
         
     | 
| 505 | 
         
            +
             
     | 
| 506 | 
         
            +
                    with gr.Tab("Validation"):
         
     | 
| 507 | 
         
            +
                        create_s2ef_tabs("Validation", results_dfs)
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                    # Evaluation results
         
     | 
| 510 | 
         
            +
                    gr.Markdown("## Evaluations", elem_classes="markdown-text")
         
     | 
| 511 | 
         
            +
                    with gr.Row():
         
     | 
| 512 | 
         
            +
                        create_evaluation_tabs(results_dfs)
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                    (
         
     | 
| 515 | 
         
            +
                        submit_button,
         
     | 
| 516 | 
         
            +
                        file_output,
         
     | 
| 517 | 
         
            +
                        eval_type,
         
     | 
| 518 | 
         
            +
                        organization,
         
     | 
| 519 | 
         
            +
                        model_name_textbox,
         
     | 
| 520 | 
         
            +
                        model_url,
         
     | 
| 521 | 
         
            +
                        mail,
         
     | 
| 522 | 
         
            +
                        dataset,
         
     | 
| 523 | 
         
            +
                        additional_info,
         
     | 
| 524 | 
         
            +
                        submission_result,
         
     | 
| 525 | 
         
            +
                    ) = create_submission_interface()
         
     | 
| 526 | 
         
            +
             
     | 
| 527 | 
         
            +
                    submit_button.click(
         
     | 
| 528 | 
         
            +
                        add_new_eval,
         
     | 
| 529 | 
         
            +
                        [
         
     | 
| 530 | 
         
            +
                            file_output,
         
     | 
| 531 | 
         
            +
                            eval_type,
         
     | 
| 532 | 
         
            +
                            organization,
         
     | 
| 533 | 
         
            +
                            model_name_textbox,
         
     | 
| 534 | 
         
            +
                            model_url,
         
     | 
| 535 | 
         
            +
                            mail,
         
     | 
| 536 | 
         
            +
                            dataset,
         
     | 
| 537 | 
         
            +
                            additional_info,
         
     | 
| 538 | 
         
            +
                        ],
         
     | 
| 539 | 
         
            +
                        submission_result,
         
     | 
| 540 | 
         
            +
                    )
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
                return demo
         
     | 
| 543 | 
         
            +
             
     | 
| 544 | 
         
            +
             
     | 
| 545 | 
         
            +
            def restart_space():
         
     | 
| 546 | 
         
            +
                api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
         
     | 
| 547 | 
         
            +
             
     | 
| 548 | 
         
            +
             
     | 
| 549 | 
         
            +
            def main():
         
     | 
| 550 | 
         
            +
                demo = create_interface()
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                scheduler = BackgroundScheduler()
         
     | 
| 553 | 
         
            +
                scheduler.add_job(restart_space, "interval", seconds=3600)
         
     | 
| 554 | 
         
            +
                scheduler.start()
         
     | 
| 555 | 
         
            +
             
     | 
| 556 | 
         
            +
                # Launch the demo
         
     | 
| 557 | 
         
            +
                demo.launch(debug=True, share=True)
         
     | 
| 558 | 
         
            +
             
     | 
| 559 | 
         
            +
             
     | 
| 560 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 561 | 
         
            +
                main()
         
     | 
    	
        content.py
    ADDED
    
    | 
         @@ -0,0 +1,70 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # HTML title for the application
         
     | 
| 2 | 
         
            +
            TITLE = """<h1 align="center" id="space-title">FAIR Chemistry Leaderboard</h1>"""
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            # Main introduction text
         
     | 
| 5 | 
         
            +
            INTRODUCTION_TEXT = """
         
     | 
| 6 | 
         
            +
            ## Welcome!
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            This space will host the FAIR Chemistry team's series of leaderboards across the different chemical domains, e.g. molecules, catalysts, materials.
         
     | 
| 9 | 
         
            +
            Leaderboards previously hosted on EvalAI ([OC20](https://eval.ai/web/challenges/challenge-page/712/overview)) will also be migrated here in the future.
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            ### 🧬 OMol25
         
     | 
| 13 | 
         
            +
            This leaderboard showcases the performance of various machine learning interatomic potentials (MLIP) on the Open Molecules 2025 (OMol25) dataset.
         
     | 
| 14 | 
         
            +
            OMol25 represents a diverse, high-quality dataset uniquely blending elemental, chemical, and structural diversity.
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            For more details about the dataset and evaluation metrics, please refer to our [paper](https://arxiv.org/pdf/2505.08762).
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            #### Evaluation Categories:
         
     | 
| 19 | 
         
            +
            - **S2EF (Structure to Energy and Forces)**: Test and Validation splits across different molecular categories
         
     | 
| 20 | 
         
            +
            - **Specialized Evaluations**: Practically relevant chemistry tasks to evaluate models beyond just S2EF metrics (i.e. ligand-strain, spin gap, etc.)
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            For details on how to generate prediction files for submission, please refer to the documentation provided [here](https://fair-chem.github.io/molecules/leaderboard.html).
         
     | 
| 23 | 
         
            +
            """
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            # Submission instructions
         
     | 
| 26 | 
         
            +
            SUBMISSION_TEXT = """
         
     | 
| 27 | 
         
            +
            ## How to Submit
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            To submit your model predictions:
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            1. **Prepare your predictions** in the required format (NPZ for S2EF tasks, JSON for other evaluations)
         
     | 
| 32 | 
         
            +
            2. **Fill in the model information** including name, organization, and contact details
         
     | 
| 33 | 
         
            +
            3. **Select the evaluation type** that matches your prediction file
         
     | 
| 34 | 
         
            +
            4. **Upload your file** and click Submit
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            **Important Notes:**
         
     | 
| 37 | 
         
            +
            - Ensure your prediction file format matches the expected format for the selected evaluation
         
     | 
| 38 | 
         
            +
            - Your email will be stored privately and only used for communication regarding your submission
         
     | 
| 39 | 
         
            +
            - Results will appear on the leaderboard after successful validation
         
     | 
| 40 | 
         
            +
            - Remain on the page until you see the "Success" message.
         
     | 
| 41 | 
         
            +
            - S2EF evaluations can take 10-20 minutes, the other evaluations happen in a few minutes. Please be patient.
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            This leaderboard is actively being developed and we are always open to feedback. If you run into any issues or have a question please
         
     | 
| 44 | 
         
            +
            reach out to us at our Github [page](https://github.com/facebookresearch/fairchem) or the [leaderboard discussion forum](https://huggingface.co/spaces/facebook/fairchem_leaderboard/discussions).
         
     | 
| 45 | 
         
            +
            """
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            # Citation information
         
     | 
| 48 | 
         
            +
            CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
         
     | 
| 49 | 
         
            +
            CITATION_BUTTON_TEXT = r"""
         
     | 
| 50 | 
         
            +
            ```latex
         
     | 
| 51 | 
         
            +
            @article{levine2025open,
         
     | 
| 52 | 
         
            +
              title={The open molecules 2025 (omol25) dataset, evaluations, and models},
         
     | 
| 53 | 
         
            +
              author={Levine, Daniel S and Shuaibi, Muhammed and Spotte-Smith, Evan Walter Clark and Taylor, Michael G and Hasyim, Muhammad R and Michel, Kyle and Batatia, Ilyes and Cs{'a}nyi, G{'a}bor and Dzamba, Misko and Eastman, Peter and others},
         
     | 
| 54 | 
         
            +
              journal={arXiv preprint arXiv:2505.08762},
         
     | 
| 55 | 
         
            +
              year={2025}
         
     | 
| 56 | 
         
            +
            }
         
     | 
| 57 | 
         
            +
            ```
         
     | 
| 58 | 
         
            +
            """
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            # Table configuration
         
     | 
| 61 | 
         
            +
            PRE_COLUMN_NAMES = ["Model", "Organization", "Training Set"]
         
     | 
| 62 | 
         
            +
            POST_COLUMN_NAMES = ["Submission date"]
         
     | 
| 63 | 
         
            +
            TYPES = ["markdown", "markdown", "str", "number", "number", "str"]
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            def model_hyperlink(link: str, model_name: str) -> str:
         
     | 
| 67 | 
         
            +
                """Create a hyperlink for model names in the leaderboard."""
         
     | 
| 68 | 
         
            +
                if not link or link.strip() == "":
         
     | 
| 69 | 
         
            +
                    return model_name
         
     | 
| 70 | 
         
            +
                return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
         
     | 
    	
        evaluator.py
    ADDED
    
    | 
         @@ -0,0 +1,238 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import logging
         
     | 
| 2 | 
         
            +
            from pathlib import Path
         
     | 
| 3 | 
         
            +
            from typing import Dict, List, Tuple
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            import numpy as np
         
     | 
| 6 | 
         
            +
            import torch
         
     | 
| 7 | 
         
            +
            import json
         
     | 
| 8 | 
         
            +
            from fairchem.core.modules.evaluator import Evaluator
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            from fairchem.data.omol.modules.evaluator import (
         
     | 
| 11 | 
         
            +
                ligand_pocket,
         
     | 
| 12 | 
         
            +
                ligand_strain,
         
     | 
| 13 | 
         
            +
                geom_conformers,
         
     | 
| 14 | 
         
            +
                protonation_energies,
         
     | 
| 15 | 
         
            +
                unoptimized_ie_ea,
         
     | 
| 16 | 
         
            +
                distance_scaling,
         
     | 
| 17 | 
         
            +
                unoptimized_spin_gap,
         
     | 
| 18 | 
         
            +
            )
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            OMOL_EVAL_FUNCTIONS = {
         
     | 
| 21 | 
         
            +
                "Ligand pocket": ligand_pocket,
         
     | 
| 22 | 
         
            +
                "Ligand strain": ligand_strain,
         
     | 
| 23 | 
         
            +
                "Conformers": geom_conformers,
         
     | 
| 24 | 
         
            +
                "Protonation": protonation_energies,
         
     | 
| 25 | 
         
            +
                "IE_EA": unoptimized_ie_ea,
         
     | 
| 26 | 
         
            +
                "Distance scaling": distance_scaling,
         
     | 
| 27 | 
         
            +
                "Spin gap": unoptimized_spin_gap,
         
     | 
| 28 | 
         
            +
            }
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            OMOL_DATA_ID_MAPPING = {
         
     | 
| 31 | 
         
            +
                "metal_complexes": ["metal_complexes"],
         
     | 
| 32 | 
         
            +
                "electrolytes": ["elytes"],
         
     | 
| 33 | 
         
            +
                "biomolecules": ["biomolecules"],
         
     | 
| 34 | 
         
            +
                "neutral_organics": ["ani2x", "orbnet_denali", "geom_orca6", "trans1x", "rgd"],
         
     | 
| 35 | 
         
            +
            }
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            def npz_2_s2ef_input(npz_input_file: Path, subset: str) -> Dict[str, torch.tensor]:
         
     | 
| 39 | 
         
            +
                with np.load(npz_input_file, allow_pickle=True) as data:
         
     | 
| 40 | 
         
            +
                    forces = data["forces"]
         
     | 
| 41 | 
         
            +
                    energy = data["energy"]
         
     | 
| 42 | 
         
            +
                    data_ids = np.array(data["data_ids"])
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                out_energy = []
         
     | 
| 45 | 
         
            +
                out_forces = []
         
     | 
| 46 | 
         
            +
                out_atoms = []
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                order = range(len(forces))
         
     | 
| 49 | 
         
            +
                for x in order:
         
     | 
| 50 | 
         
            +
                    data_id = data_ids[x]
         
     | 
| 51 | 
         
            +
                    if subset == "all" or data_id in OMOL_DATA_ID_MAPPING.get(subset, []):
         
     | 
| 52 | 
         
            +
                        out_energy.append(energy[x])
         
     | 
| 53 | 
         
            +
                        force_array = forces[x]
         
     | 
| 54 | 
         
            +
                        out_forces.append(torch.tensor(force_array, dtype=torch.float32))
         
     | 
| 55 | 
         
            +
                        out_atoms.append(len(force_array))
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                energy = torch.tensor(out_energy)
         
     | 
| 58 | 
         
            +
                out_forces = torch.cat(out_forces, dim=0)
         
     | 
| 59 | 
         
            +
                out_dict = {
         
     | 
| 60 | 
         
            +
                    "energy": energy.float(),
         
     | 
| 61 | 
         
            +
                    "forces": out_forces,
         
     | 
| 62 | 
         
            +
                    "natoms": torch.tensor(out_atoms),
         
     | 
| 63 | 
         
            +
                }
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                return out_dict
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
            def npz_2_s2ef_submission(
         
     | 
| 69 | 
         
            +
                npz_input_file: Path, order: List[int], subset: str = "All"
         
     | 
| 70 | 
         
            +
            ) -> Dict[str, torch.tensor]:
         
     | 
| 71 | 
         
            +
                with np.load(npz_input_file) as data:
         
     | 
| 72 | 
         
            +
                    forces = data["forces"]
         
     | 
| 73 | 
         
            +
                    energy = data["energy"]
         
     | 
| 74 | 
         
            +
                    natoms = data["natoms"]
         
     | 
| 75 | 
         
            +
                    data_ids = data["data_ids"]
         
     | 
| 76 | 
         
            +
                    forces = np.split(forces, np.cumsum(natoms)[:-1])
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                # check for infs
         
     | 
| 79 | 
         
            +
                if len(set(np.where(np.isinf(energy))[0])) != 0:
         
     | 
| 80 | 
         
            +
                    inf_energy_ids = list(set(np.where(np.isinf(energy))[0]))
         
     | 
| 81 | 
         
            +
                    raise Exception(
         
     | 
| 82 | 
         
            +
                        f"Inf values found in `energy` for IDs: ({inf_energy_ids[:3]}, ...)"
         
     | 
| 83 | 
         
            +
                    )
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                out_energy = []
         
     | 
| 86 | 
         
            +
                out_forces = []
         
     | 
| 87 | 
         
            +
                out_atoms = []
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                if order is None:
         
     | 
| 90 | 
         
            +
                    order = range(len(forces))
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                for x in order:
         
     | 
| 93 | 
         
            +
                    data_id = data_ids[x]
         
     | 
| 94 | 
         
            +
                    if subset == "all" or data_id in OMOL_DATA_ID_MAPPING.get(subset, []):
         
     | 
| 95 | 
         
            +
                        out_energy.append(energy[x])
         
     | 
| 96 | 
         
            +
                        force_array = forces[x]
         
     | 
| 97 | 
         
            +
                        out_forces.append(torch.tensor(force_array, dtype=torch.float32))
         
     | 
| 98 | 
         
            +
                        out_atoms.append(force_array.shape[0])
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                energy = torch.tensor(out_energy)
         
     | 
| 101 | 
         
            +
                out_forces = torch.cat(out_forces, dim=0)
         
     | 
| 102 | 
         
            +
                out_dict = {
         
     | 
| 103 | 
         
            +
                    "energy": energy.float().squeeze(),
         
     | 
| 104 | 
         
            +
                    "forces": out_forces,
         
     | 
| 105 | 
         
            +
                    "natoms": torch.tensor(out_atoms),
         
     | 
| 106 | 
         
            +
                }
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                return out_dict
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
            def reorder(ref: np.ndarray, to_reorder: np.ndarray) -> np.ndarray:
         
     | 
| 112 | 
         
            +
                """
         
     | 
| 113 | 
         
            +
                Get the ordering so that `to_reorder[ordering]` == ref.
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                eg:
         
     | 
| 116 | 
         
            +
                ref = [c, a, b]
         
     | 
| 117 | 
         
            +
                to_reorder = [b, a, c]
         
     | 
| 118 | 
         
            +
                order = reorder(ref, to_reorder)  # [2, 1, 0]
         
     | 
| 119 | 
         
            +
                assert ref == to_reorder[order]
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                Parameters
         
     | 
| 122 | 
         
            +
                ----------
         
     | 
| 123 | 
         
            +
                ref : np.ndarray
         
     | 
| 124 | 
         
            +
                    Reference array. Must not contains duplicates.
         
     | 
| 125 | 
         
            +
                to_reorder : np.ndarray
         
     | 
| 126 | 
         
            +
                    Array to re-order. Must not contains duplicates.
         
     | 
| 127 | 
         
            +
                    Items must be the same as in `ref`.
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                Returns
         
     | 
| 130 | 
         
            +
                -------
         
     | 
| 131 | 
         
            +
                np.ndarray
         
     | 
| 132 | 
         
            +
                    the ordering to apply on `to_reorder`
         
     | 
| 133 | 
         
            +
                """
         
     | 
| 134 | 
         
            +
                assert len(ref) == len(set(ref))
         
     | 
| 135 | 
         
            +
                assert len(to_reorder) == len(set(to_reorder))
         
     | 
| 136 | 
         
            +
                assert set(ref) == set(to_reorder)
         
     | 
| 137 | 
         
            +
                item_to_idx = {item: idx for idx, item in enumerate(to_reorder)}
         
     | 
| 138 | 
         
            +
                return np.array([item_to_idx[item] for item in ref])
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
            def get_order(path_submission: Path, path_annotations: Path):
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                with np.load(path_submission) as data:
         
     | 
| 144 | 
         
            +
                    submission_ids = data["ids"]
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                with np.load(path_annotations, allow_pickle=True) as data:
         
     | 
| 147 | 
         
            +
                    annotations_ids = data["ids"]
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                if set(submission_ids) != set(annotations_ids):
         
     | 
| 150 | 
         
            +
                    missing_ids = set(annotations_ids) - set(submission_ids)
         
     | 
| 151 | 
         
            +
                    unexpected_ids = set(submission_ids) - set(annotations_ids)
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    details = (
         
     | 
| 154 | 
         
            +
                        f"{len(missing_ids)} missing IDs: ({list(missing_ids)[:3]}, ...)\n"
         
     | 
| 155 | 
         
            +
                        f"{len(unexpected_ids)} unexpected IDs: ({list(unexpected_ids)[:3]}, ...)"
         
     | 
| 156 | 
         
            +
                    )
         
     | 
| 157 | 
         
            +
                    raise Exception(f"IDs don't match.\n{details}")
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                return reorder(annotations_ids, submission_ids)
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
            def extract_and_align(
         
     | 
| 163 | 
         
            +
                path_submission: Path,
         
     | 
| 164 | 
         
            +
                path_annotations: Path,
         
     | 
| 165 | 
         
            +
                subset: str,
         
     | 
| 166 | 
         
            +
            ) -> Tuple[Dict[str, torch.tensor], Dict[str, torch.tensor]]:
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                order = get_order(path_submission, path_annotations)
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                submission_data = npz_2_s2ef_submission(path_submission, order, subset)
         
     | 
| 171 | 
         
            +
                annotations_data = npz_2_s2ef_input(path_annotations, subset)
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                return submission_data, annotations_data
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
            def s2ef_metrics(
         
     | 
| 177 | 
         
            +
                annotations_path: Path,
         
     | 
| 178 | 
         
            +
                submission_filename: Path,
         
     | 
| 179 | 
         
            +
                subsets: list = ["all"],
         
     | 
| 180 | 
         
            +
            ) -> Dict[str, float]:
         
     | 
| 181 | 
         
            +
                evaluator = Evaluator(task="s2ef")
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                metrics = {}
         
     | 
| 184 | 
         
            +
                for subset in subsets:
         
     | 
| 185 | 
         
            +
                    submission_data, annotations_data = extract_and_align(
         
     | 
| 186 | 
         
            +
                        submission_filename,
         
     | 
| 187 | 
         
            +
                        annotations_path,
         
     | 
| 188 | 
         
            +
                        subset,
         
     | 
| 189 | 
         
            +
                    )
         
     | 
| 190 | 
         
            +
                    subset_metrics = evaluator.eval(
         
     | 
| 191 | 
         
            +
                        submission_data, annotations_data, prev_metrics={}
         
     | 
| 192 | 
         
            +
                    )
         
     | 
| 193 | 
         
            +
                    for key in ["energy_mae", "forces_mae"]:
         
     | 
| 194 | 
         
            +
                        metrics[f"{subset}_{key}"] = subset_metrics[key]["metric"]
         
     | 
| 195 | 
         
            +
                return metrics
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
            def omol_evaluations(
         
     | 
| 199 | 
         
            +
                annotations_path: Path,
         
     | 
| 200 | 
         
            +
                submission_filename: Path,
         
     | 
| 201 | 
         
            +
                eval_type: str,
         
     | 
| 202 | 
         
            +
            ) -> Dict[str, float]:
         
     | 
| 203 | 
         
            +
                with open(submission_filename) as f:
         
     | 
| 204 | 
         
            +
                    submission_data = json.load(f)
         
     | 
| 205 | 
         
            +
                with open(annotations_path) as f:
         
     | 
| 206 | 
         
            +
                    annotations_data = json.load(f)
         
     | 
| 207 | 
         
            +
                eval_fn = OMOL_EVAL_FUNCTIONS.get(eval_type)
         
     | 
| 208 | 
         
            +
                metrics = eval_fn(annotations_data, submission_data)
         
     | 
| 209 | 
         
            +
                return metrics
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
            def evaluate(
         
     | 
| 213 | 
         
            +
                annotations_path: Path,
         
     | 
| 214 | 
         
            +
                submission_filename: Path,
         
     | 
| 215 | 
         
            +
                eval_type: str,
         
     | 
| 216 | 
         
            +
            ):
         
     | 
| 217 | 
         
            +
                if eval_type in ["Validation", "Test"]:
         
     | 
| 218 | 
         
            +
                    metrics = s2ef_metrics(
         
     | 
| 219 | 
         
            +
                        annotations_path,
         
     | 
| 220 | 
         
            +
                        submission_filename,
         
     | 
| 221 | 
         
            +
                        subsets=[
         
     | 
| 222 | 
         
            +
                            "all",
         
     | 
| 223 | 
         
            +
                            "metal_complexes",
         
     | 
| 224 | 
         
            +
                            "electrolytes",
         
     | 
| 225 | 
         
            +
                            "biomolecules",
         
     | 
| 226 | 
         
            +
                            "neutral_organics",
         
     | 
| 227 | 
         
            +
                        ],
         
     | 
| 228 | 
         
            +
                    )
         
     | 
| 229 | 
         
            +
                elif eval_type in OMOL_EVAL_FUNCTIONS:
         
     | 
| 230 | 
         
            +
                    metrics = omol_evaluations(
         
     | 
| 231 | 
         
            +
                        annotations_path,
         
     | 
| 232 | 
         
            +
                        submission_filename,
         
     | 
| 233 | 
         
            +
                        eval_type,
         
     | 
| 234 | 
         
            +
                    )
         
     | 
| 235 | 
         
            +
                else:
         
     | 
| 236 | 
         
            +
                    raise ValueError(f"Unknown eval_type: {eval_type}")
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                return metrics
         
     | 
    	
        requirements.txt
    ADDED
    
    | 
         @@ -0,0 +1,8 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            datasets
         
     | 
| 2 | 
         
            +
            gradio
         
     | 
| 3 | 
         
            +
            huggingface-hub
         
     | 
| 4 | 
         
            +
            numpy
         
     | 
| 5 | 
         
            +
            pandas
         
     | 
| 6 | 
         
            +
            APScheduler
         
     | 
| 7 | 
         
            +
            fairchem-core
         
     | 
| 8 | 
         
            +
            git+https://github.com/facebookresearch/fairchem.git#subdirectory=packages/fairchem-data-omol
         
     | 
    	
        submit_leaderboard.py
    ADDED
    
    | 
         @@ -0,0 +1,103 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from app import add_new_eval, LeaderboardData
         
     | 
| 2 | 
         
            +
            from pathlib import Path
         
     | 
| 3 | 
         
            +
            import gradio as gr
         
     | 
| 4 | 
         
            +
            import os
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            # Create a mock profile for testing
         
     | 
| 7 | 
         
            +
            class MockProfile:
         
     | 
| 8 | 
         
            +
                def __init__(self, username):
         
     | 
| 9 | 
         
            +
                    self.username = username
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            mock_profile = MockProfile("mshuaibi_test")
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            evals = {
         
     | 
| 14 | 
         
            +
                # "IE_EA": "unoptimized_ie_ea_results.json",
         
     | 
| 15 | 
         
            +
                # "Ligand pocket": "pdb_pocket_results.json",
         
     | 
| 16 | 
         
            +
                "Ligand strain": "ligand_strain_results.json",
         
     | 
| 17 | 
         
            +
                # "Conformers": "geom_conformers_results.json",
         
     | 
| 18 | 
         
            +
                # "Protonation": "protonation_energies_results.json",
         
     | 
| 19 | 
         
            +
                # "Distance scaling": "distance_scaling_results.json",
         
     | 
| 20 | 
         
            +
                # "Spin gap": "unoptimized_spin_gap_results.json",
         
     | 
| 21 | 
         
            +
                # "Validation": "val_predictions.npz",
         
     | 
| 22 | 
         
            +
                # "Test": "test_predictions.npz"
         
     | 
| 23 | 
         
            +
            }
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            models = {
         
     | 
| 26 | 
         
            +
                # "esen-s-c-4M": {
         
     | 
| 27 | 
         
            +
                #     "name": "eSEN-sm-cons.",
         
     | 
| 28 | 
         
            +
                #     "dataset_size": "OMol-4M",
         
     | 
| 29 | 
         
            +
                #     "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_sm_conserving_4M",
         
     | 
| 30 | 
         
            +
                #     "paper_link": "https://arxiv.org/pdf/2505.08762",
         
     | 
| 31 | 
         
            +
                # },
         
     | 
| 32 | 
         
            +
                # "esen-s-c-All": {
         
     | 
| 33 | 
         
            +
                #     "name": "eSEN-sm-cons.",
         
     | 
| 34 | 
         
            +
                #     "dataset_size": "OMol-All",
         
     | 
| 35 | 
         
            +
                #     "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_sm_conserving_all",
         
     | 
| 36 | 
         
            +
                #     "paper_link": "https://arxiv.org/pdf/2505.08762",
         
     | 
| 37 | 
         
            +
                # },
         
     | 
| 38 | 
         
            +
                # "esen-m-d-4M": {
         
     | 
| 39 | 
         
            +
                #     "name": "eSEN-md-d.",
         
     | 
| 40 | 
         
            +
                #     "dataset_size": "OMol-4M",
         
     | 
| 41 | 
         
            +
                #     "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_md_direct_4M_finetune",
         
     | 
| 42 | 
         
            +
                #     "paper_link": "https://arxiv.org/pdf/2505.08762",
         
     | 
| 43 | 
         
            +
                # },
         
     | 
| 44 | 
         
            +
                # "esen-m-d-All": {
         
     | 
| 45 | 
         
            +
                #     "name": "eSEN-md-d.",
         
     | 
| 46 | 
         
            +
                #     "dataset_size": "OMol-All",
         
     | 
| 47 | 
         
            +
                #     "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_esen_md_direct_all_finetune",
         
     | 
| 48 | 
         
            +
                #     "paper_link": "https://arxiv.org/pdf/2505.08762",
         
     | 
| 49 | 
         
            +
                # },
         
     | 
| 50 | 
         
            +
                # "goc-4M": {
         
     | 
| 51 | 
         
            +
                #     "name": "GemNet-OC",
         
     | 
| 52 | 
         
            +
                #     "dataset_size": "OMol-4M",
         
     | 
| 53 | 
         
            +
                #     "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/043025_gemnet_oc_4M",
         
     | 
| 54 | 
         
            +
                #     "paper_link": "https://arxiv.org/pdf/2505.08762",
         
     | 
| 55 | 
         
            +
                # },
         
     | 
| 56 | 
         
            +
                # "goc-All": {
         
     | 
| 57 | 
         
            +
                #     "name": "GemNet-OC",
         
     | 
| 58 | 
         
            +
                #     "dataset_size": "OMol-All",
         
     | 
| 59 | 
         
            +
                #     "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/050325_gemnet_oc_all",
         
     | 
| 60 | 
         
            +
                #     "paper_link": "https://arxiv.org/pdf/2505.08762",
         
     | 
| 61 | 
         
            +
                # },
         
     | 
| 62 | 
         
            +
                # "uma-s-1p1": {
         
     | 
| 63 | 
         
            +
                #     "name": "UMA-S-1p1",
         
     | 
| 64 | 
         
            +
                #     "dataset_size": "UMA-459M",
         
     | 
| 65 | 
         
            +
                #     "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/uma_sm_1p1",
         
     | 
| 66 | 
         
            +
                #     "paper_link": "https://arxiv.org/pdf/2506.23971",
         
     | 
| 67 | 
         
            +
                # },
         
     | 
| 68 | 
         
            +
                # "uma-m-1p1": {
         
     | 
| 69 | 
         
            +
                #     "name": "UMA-M-1p1",
         
     | 
| 70 | 
         
            +
                #     "dataset_size": "UMA-459M",
         
     | 
| 71 | 
         
            +
                #     "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/uma_md_1p1",
         
     | 
| 72 | 
         
            +
                #     "paper_link": "https://arxiv.org/pdf/2506.23971",
         
     | 
| 73 | 
         
            +
                # },
         
     | 
| 74 | 
         
            +
                "mace": {
         
     | 
| 75 | 
         
            +
                    "name": "mace-omol-L-0",
         
     | 
| 76 | 
         
            +
                    "dataset_size": "OMol-All",
         
     | 
| 77 | 
         
            +
                    "results_dir": "/large_experiments/opencatalyst/foundation_models/data/omol/leaderboard/predictions/mace",
         
     | 
| 78 | 
         
            +
                    "paper_link": "https://github.com/ACEsuit/mace/releases/tag/v0.3.14",
         
     | 
| 79 | 
         
            +
                    "org": "MACE-Cambridge"
         
     | 
| 80 | 
         
            +
                },
         
     | 
| 81 | 
         
            +
            }
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
            for model, model_info in models.items():
         
     | 
| 84 | 
         
            +
                model_name = model_info["name"]
         
     | 
| 85 | 
         
            +
                dataset_size = model_info["dataset_size"]
         
     | 
| 86 | 
         
            +
                results_dir = model_info["results_dir"]
         
     | 
| 87 | 
         
            +
                paper_link = model_info["paper_link"]
         
     | 
| 88 | 
         
            +
                org = model_info.get("org", "Meta")
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                for _eval, eval_path in evals.items():
         
     | 
| 91 | 
         
            +
                    generator = add_new_eval(
         
     | 
| 92 | 
         
            +
                        path_to_file=os.path.join(results_dir, eval_path),
         
     | 
| 93 | 
         
            +
                        eval_type=_eval,
         
     | 
| 94 | 
         
            +
                        organization=org,
         
     | 
| 95 | 
         
            +
                        model=model_name,
         
     | 
| 96 | 
         
            +
                        url=paper_link,
         
     | 
| 97 | 
         
            +
                        mail="mshuaibi@meta.com",
         
     | 
| 98 | 
         
            +
                        training_set=dataset_size,
         
     | 
| 99 | 
         
            +
                        additional_info="",
         
     | 
| 100 | 
         
            +
                        profile=mock_profile,
         
     | 
| 101 | 
         
            +
                    )
         
     | 
| 102 | 
         
            +
                    for i in generator:
         
     | 
| 103 | 
         
            +
                        print(i)
         
     |