Spaces:
Runtime error
Runtime error
| import sys | |
| from typing import List | |
| import traceback | |
| import os | |
| import base64 | |
| import logging | |
| logging.basicConfig(level=logging.INFO) | |
| import modules.cloud_logging | |
| import tokenizers | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import json | |
| import pprint | |
| # needs to be imported *before* transformers | |
| if os.path.exists('debug'): | |
| BIG_MODEL = False | |
| CUDA = False | |
| else: | |
| BIG_MODEL = True | |
| CUDA = True | |
| # from flask import Flask, request, render_template | |
| # from flask_cors import CORS | |
| # app = Flask(__name__, static_folder='static') | |
| # app.config['TEMPLATES_AUTO_RELOAD'] = Tru | |
| # CORS(app, resources= { | |
| # r"/generate": {"origins": origins}, | |
| # r"/infill": {"origins": origins}, | |
| # }) | |
| # origins=[f"http://localhost:{PORT}", "https://huggingface.co", "https://hf.space"] | |
| PORT = 7860 | |
| VERBOSE = False | |
| MAX_LENGTH = 256+64 | |
| TRUNCATION_MESSAGE = f'warning: This demo is limited to {MAX_LENGTH} tokens in the document for efficiency.' | |
| if BIG_MODEL: | |
| model_name = "facebook/incoder-6B" | |
| kwargs = dict( | |
| revision="float16", | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True, | |
| ) | |
| else: | |
| model_name = "facebook/incoder-1B" | |
| kwargs = dict() | |
| from fastapi import FastAPI, Request | |
| from fastapi.staticfiles import StaticFiles | |
| from fastapi.responses import FileResponse, StreamingResponse | |
| app = FastAPI(docs_url=None, redoc_url=None) | |
| app.mount("/static", StaticFiles(directory="static"), name="static") | |
| logging.info("loading model") | |
| model = AutoModelForCausalLM.from_pretrained(model_name, **kwargs) | |
| logging.info("loading tokenizer") | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| logging.info("loading complete") | |
| if CUDA: | |
| model = model.half().cuda() | |
| BOS = "<|endoftext|>" | |
| EOM = "<|endofmask|>" | |
| def make_sentinel(i): | |
| return f"<|mask:{i}|>" | |
| SPECIAL_TOKENS = [make_sentinel(i) for i in range(256)] + [EOM] | |
| def generate(input, length_limit=None, temperature=None): | |
| input_ids = tokenizer(input, return_tensors="pt").input_ids | |
| if CUDA: | |
| input_ids = input_ids.cuda() | |
| current_length = input_ids.flatten().size(0) | |
| max_length = length_limit + current_length | |
| truncated = False | |
| if max_length > MAX_LENGTH: | |
| max_length = MAX_LENGTH | |
| truncated = True | |
| if max_length == current_length: | |
| return input, True | |
| output = model.generate(input_ids=input_ids, do_sample=True, top_p=0.95, temperature=temperature, max_length=max_length) | |
| detok_hypo_str = tokenizer.decode(output.flatten()) | |
| if detok_hypo_str.startswith(BOS): | |
| detok_hypo_str = detok_hypo_str[len(BOS):] | |
| return detok_hypo_str, truncated | |
| def infill(parts: List[str], length_limit=None, temperature=None, extra_sentinel=False, max_retries=1): | |
| assert isinstance(parts, list) | |
| retries_attempted = 0 | |
| done = False | |
| while (not done) and (retries_attempted < max_retries): | |
| any_truncated = False | |
| retries_attempted += 1 | |
| if VERBOSE: | |
| logging.info(f"retry {retries_attempted}") | |
| if len(parts) == 1: | |
| prompt = parts[0] | |
| else: | |
| prompt = "" | |
| # encode parts separated by sentinel | |
| for sentinel_ix, part in enumerate(parts): | |
| prompt += part | |
| if extra_sentinel or (sentinel_ix < len(parts) - 1): | |
| prompt += make_sentinel(sentinel_ix) | |
| # prompt += TokenizerWrapper.make_sentinel(0) | |
| infills = [] | |
| complete = [] | |
| done = True | |
| for sentinel_ix, part in enumerate(parts[:-1]): | |
| complete.append(part) | |
| prompt += make_sentinel(sentinel_ix) | |
| completion, this_truncated = generate(prompt, length_limit, temperature) | |
| any_truncated |= this_truncated | |
| completion = completion[len(prompt):] | |
| if EOM not in completion: | |
| if VERBOSE: | |
| logging.info(f"warning: {EOM} not found") | |
| completion += EOM | |
| # TODO: break inner loop here | |
| done = False | |
| completion = completion[:completion.index(EOM) + len(EOM)] | |
| infilled = completion[:-len(EOM)] | |
| infills.append(infilled) | |
| complete.append(infilled) | |
| prompt += completion | |
| complete.append(parts[-1]) | |
| text = ''.join(complete) | |
| if VERBOSE: | |
| logging.info("generated text:") | |
| logging.info(prompt) | |
| logging.info() | |
| logging.info("parts:") | |
| logging.info(parts) | |
| logging.info() | |
| logging.info("infills:") | |
| logging.info(infills) | |
| logging.info() | |
| logging.info("restitched text:") | |
| logging.info(text) | |
| logging.info() | |
| return { | |
| 'text': text, | |
| 'parts': parts, | |
| 'infills': infills, | |
| 'retries_attempted': retries_attempted, | |
| 'truncated': any_truncated, | |
| } | |
| def index() -> FileResponse: | |
| return FileResponse(path="static/index.html", media_type="text/html") | |
| # async def generate_maybe(request: Request): | |
| async def generate_maybe(info: str): | |
| # form = await info.json() | |
| # form = await request.json() | |
| # info is a base64-encoded, url-escaped json string (since GET doesn't support a body, and POST leads to CORS issues) | |
| # fix padding, following https://stackoverflow.com/a/9956217/1319683 | |
| info = base64.urlsafe_b64decode(info + '=' * (4 - len(info) % 4)).decode('utf-8') | |
| form = json.loads(info) | |
| # print(form) | |
| prompt = form['prompt'] | |
| length_limit = int(form['length']) | |
| temperature = float(form['temperature']) | |
| logging.info(json.dumps({ | |
| 'length': length_limit, | |
| 'temperature': temperature, | |
| 'prompt': prompt, | |
| })) | |
| try: | |
| generation, truncated = generate(prompt, length_limit, temperature) | |
| if truncated: | |
| message = TRUNCATION_MESSAGE | |
| else: | |
| message = '' | |
| return {'result': 'success', 'type': 'generate', 'prompt': prompt, 'text': generation, 'message': message} | |
| except Exception as e: | |
| traceback.print_exception(*sys.exc_info()) | |
| logging.error(e) | |
| return {'result': 'error', 'type': 'generate', 'prompt': prompt, 'message': f'Error: {e}.'} | |
| # async def infill_maybe(request: Request): | |
| async def infill_maybe(info: str): | |
| # form = await info.json() | |
| # form = await request.json() | |
| # info is a base64-encoded, url-escaped json string (since GET doesn't support a body, and POST leads to CORS issues) | |
| # fix padding, following https://stackoverflow.com/a/9956217/1319683 | |
| info = base64.urlsafe_b64decode(info + '=' * (4 - len(info) % 4)).decode('utf-8') | |
| form = json.loads(info) | |
| length_limit = int(form['length']) | |
| temperature = float(form['temperature']) | |
| max_retries = 1 | |
| extra_sentinel = True | |
| logging.info(json.dumps({ | |
| 'length': length_limit, | |
| 'temperature': temperature, | |
| 'parts_joined': '<infill>'.join(form['parts']), | |
| })) | |
| try: | |
| if len(form['parts']) > 4: | |
| return {'result': 'error', 'text': ''.join(form['parts']), 'type': 'infill', 'message': f"error: Can't use more than 3 <infill> tokens in this demo (for efficiency)."} | |
| generation = infill(form['parts'], length_limit, temperature, extra_sentinel=extra_sentinel, max_retries=max_retries) | |
| generation['result'] = 'success' | |
| generation['type'] = 'infill' | |
| if generation['truncated']: | |
| generation['message'] = TRUNCATION_MESSAGE | |
| else: | |
| generation['message'] = '' | |
| return generation | |
| # return {'result': 'success', 'prefix': prefix, 'suffix': suffix, 'text': generation['text']} | |
| except Exception as e: | |
| traceback.print_exception(*sys.exc_info()) | |
| logging.error(e) | |
| return {'result': 'error', 'type': 'infill', 'message': f'Error: {e}.'} | |
| if __name__ == "__main__": | |
| app.run(host='0.0.0.0', port=PORT, threaded=False) | |