Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # Copyright (c) Meta Platforms, Inc. All Rights Reserved | |
| # Modified by Feng Liang from | |
| # https://github.com/MendelXu/zsseg.baseline/blob/master/mask_former/zero_shot_mask_former_model.py | |
| import logging | |
| from typing import Tuple | |
| import numpy as np | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from detectron2.config import configurable | |
| from detectron2.data import MetadataCatalog | |
| from detectron2.modeling import META_ARCH_REGISTRY | |
| from detectron2.modeling.backbone import Backbone | |
| from detectron2.modeling.postprocessing import sem_seg_postprocess | |
| from detectron2.structures import ImageList | |
| from detectron2.utils.logger import log_first_n | |
| from .modeling.clip_adapter import ( | |
| ClipAdapter, | |
| MaskFormerClipAdapter, | |
| build_text_prompt, | |
| ) | |
| from .mask_former_model import MaskFormer | |
| from .utils.misc import get_gt_binary_masks | |
| class OVSeg(MaskFormer): | |
| """ | |
| Main class for zero shot mask classification semantic segmentation architectures. | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| backbone: Backbone, | |
| sem_seg_head: nn.Module, | |
| clip_adapter: nn.Module, | |
| criterion: nn.Module, | |
| num_queries: int, | |
| panoptic_on: bool, | |
| object_mask_threshold: float, | |
| overlap_threshold: float, | |
| metadata, | |
| size_divisibility: int, | |
| sem_seg_postprocess_before_inference: bool, | |
| clip_ensemble: bool, | |
| clip_ensemble_weight: float, | |
| pixel_mean: Tuple[float], | |
| pixel_std: Tuple[float], | |
| ): | |
| """ | |
| Args: | |
| backbone: a backbone module, must follow detectron2's backbone interface | |
| sem_seg_head: a module that predicts semantic segmentation from backbone features | |
| criterion: a module that defines the loss | |
| clip_adapter: adapter for clip-based mask classification | |
| num_queries: int, number of queries | |
| panoptic_on: bool, whether to output panoptic segmentation prediction | |
| object_mask_threshold: float, threshold to filter query based on classification score | |
| for panoptic segmentation inference | |
| overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
| metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
| segmentation inference | |
| size_divisibility: Some backbones require the input height and width to be divisible by a | |
| specific integer. We can use this to override such requirement. | |
| sem_seg_postprocess_before_inference: whether to resize the prediction back | |
| to original input size before semantic segmentation inference or after. | |
| For high-resolution dataset like Mapillary, resizing predictions before | |
| inference will cause OOM error. | |
| pixel_mean, pixel_std: list or tuple with #channels element, representing | |
| the per-channel mean and std to be used to normalize the input image | |
| """ | |
| super().__init__( | |
| backbone=backbone, | |
| sem_seg_head=sem_seg_head, | |
| criterion=criterion, | |
| num_queries=num_queries, | |
| panoptic_on=panoptic_on, | |
| object_mask_threshold=object_mask_threshold, | |
| overlap_threshold=overlap_threshold, | |
| metadata=metadata, | |
| size_divisibility=size_divisibility, | |
| sem_seg_postprocess_before_inference=sem_seg_postprocess_before_inference, | |
| pixel_mean=pixel_mean, | |
| pixel_std=pixel_std, | |
| ) | |
| self.clip_adapter: ClipAdapter = clip_adapter | |
| self.clip_ensemble: bool = clip_ensemble | |
| self.clip_ensemble_weight: float = clip_ensemble_weight | |
| def from_config(cls, cfg): | |
| init_kwargs = MaskFormer.from_config(cfg) | |
| text_templates = build_text_prompt(cfg.MODEL.CLIP_ADAPTER) | |
| clip_adapter = MaskFormerClipAdapter( | |
| cfg.MODEL.CLIP_ADAPTER.CLIP_MODEL_NAME, | |
| text_templates, | |
| mask_fill=cfg.MODEL.CLIP_ADAPTER.MASK_FILL, | |
| mask_expand_ratio=cfg.MODEL.CLIP_ADAPTER.MASK_EXPAND_RATIO, | |
| mask_thr=cfg.MODEL.CLIP_ADAPTER.MASK_THR, | |
| mask_matting=cfg.MODEL.CLIP_ADAPTER.MASK_MATTING, | |
| region_resized=cfg.MODEL.CLIP_ADAPTER.REGION_RESIZED, | |
| mask_prompt_depth=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_DEPTH, | |
| mask_prompt_fwd=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_FWD, | |
| ) | |
| init_kwargs["clip_adapter"] = clip_adapter | |
| init_kwargs["clip_ensemble"] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE | |
| init_kwargs[ | |
| "clip_ensemble_weight" | |
| ] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE_WEIGHT | |
| return init_kwargs | |
| def forward(self, batched_inputs): | |
| """ | |
| Args: | |
| batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
| Each item in the list contains the inputs for one image. | |
| For now, each item in the list is a dict that contains: | |
| * "image": Tensor, image in (C, H, W) format. | |
| * "instances": per-region ground truth | |
| * Other information that's included in the original dicts, such as: | |
| "height", "width" (int): the output resolution of the model (may be different | |
| from input resolution), used in inference. | |
| Returns: | |
| list[dict]: | |
| each dict has the results for one image. The dict contains the following keys: | |
| * "sem_seg": | |
| A Tensor that represents the | |
| per-pixel segmentation prediced by the head. | |
| The prediction has shape KxHxW that represents the logits of | |
| each class for each pixel. | |
| * "panoptic_seg": | |
| A tuple that represent panoptic output | |
| panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
| segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
| Each dict contains keys "id", "category_id", "isthing". | |
| """ | |
| dataset_name = [x["meta"]["dataset_name"] for x in batched_inputs] | |
| assert len(set(dataset_name)) == 1 | |
| dataset_name = dataset_name[0] | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| images = ImageList.from_tensors(images, self.size_divisibility) | |
| features = self.backbone(images.tensor) | |
| outputs = self.sem_seg_head(features) | |
| class_names = self.get_class_name_list(dataset_name) | |
| text_features = self.clip_adapter.get_text_features(class_names) | |
| outputs["pred_logits"] = self.clip_adapter.get_sim_logits( | |
| text_features, self.clip_adapter.normalize_feature(outputs["pred_logits"]) | |
| ) | |
| if self.training: | |
| if "aux_outputs" in outputs.keys(): | |
| for i in range(len(outputs["aux_outputs"])): | |
| outputs["aux_outputs"][i][ | |
| "pred_logits" | |
| ] = self.clip_adapter.get_sim_logits( | |
| text_features, | |
| self.clip_adapter.normalize_feature( | |
| outputs["aux_outputs"][i]["pred_logits"] | |
| ), | |
| ) | |
| # mask classification target | |
| if "instances" in batched_inputs[0]: | |
| gt_instances = [x["instances"].to(self.device) for x in batched_inputs] | |
| targets = self.prepare_targets(gt_instances, images) | |
| else: | |
| targets = None | |
| # bipartite matching-based loss | |
| losses = self.criterion(outputs, targets) | |
| for k in list(losses.keys()): | |
| if k in self.criterion.weight_dict: | |
| losses[k] *= self.criterion.weight_dict[k] | |
| else: | |
| # remove this loss if not specified in `weight_dict` | |
| losses.pop(k) | |
| return losses | |
| else: | |
| mask_cls_results = outputs["pred_logits"] | |
| mask_pred_results = outputs["pred_masks"] | |
| # upsample masks | |
| mask_pred_results = F.interpolate( | |
| mask_pred_results, | |
| size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
| mode="bilinear", | |
| align_corners=False, | |
| ) | |
| processed_results = [] | |
| for mask_cls_result, mask_pred_result, input_per_image, image_size in zip( | |
| mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes | |
| ): | |
| height = image_size[0] | |
| width = image_size[1] | |
| mask_pred_result = sem_seg_postprocess( | |
| mask_pred_result, image_size, height, width | |
| ) | |
| image = input_per_image["image"].to(self.device) | |
| r, regions = self.semantic_inference( | |
| mask_cls_result, mask_pred_result, image, class_names | |
| ) | |
| height = input_per_image.get("height", image_size[0]) | |
| width = input_per_image.get("width", image_size[1]) | |
| r = sem_seg_postprocess(r, image_size, height, width) | |
| processed_results.append({"sem_seg": r}) | |
| # panoptic segmentation inference | |
| if self.panoptic_on: | |
| panoptic_r = self.panoptic_inference( | |
| mask_cls_result, mask_pred_result | |
| ) | |
| processed_results[-1]["panoptic_seg"] = panoptic_r | |
| return processed_results | |
| def semantic_inference(self, mask_cls, mask_pred, image, class_names): | |
| mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
| mask_pred = mask_pred.sigmoid() | |
| regions = None | |
| if self.clip_ensemble: | |
| clip_cls, regions, valid_flag = self.clip_adapter( | |
| image, class_names, mask_pred, normalize=True | |
| ) | |
| if clip_cls is None: | |
| clip_cls = torch.empty(0, mask_cls.shape[-1] + 1, device=self.device) | |
| # softmax before index or after? | |
| clip_cls = F.softmax(clip_cls[:, :-1], dim=-1) | |
| if self.clip_ensemble_weight > 0: | |
| map_back_clip_cls = mask_cls.new_ones(mask_cls.shape) | |
| map_back_clip_cls[valid_flag] = clip_cls | |
| mask_cls = torch.pow(mask_cls, 1 - self.clip_ensemble_weight) * \ | |
| torch.pow(map_back_clip_cls, self.clip_ensemble_weight) | |
| else: | |
| # only clip model predictions are used | |
| mask_cls = clip_cls | |
| mask_pred = mask_pred[valid_flag] | |
| semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
| return semseg, regions | |
| def get_class_name_list(self, dataset_name): | |
| class_names = [ | |
| c.strip() for c in MetadataCatalog.get(dataset_name).stuff_classes | |
| ] | |
| return class_names | |
| class OVSegDEMO(MaskFormer): | |
| """ | |
| Main class for zero shot mask classification semantic segmentation architectures. | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| backbone: Backbone, | |
| sem_seg_head: nn.Module, | |
| clip_adapter: nn.Module, | |
| criterion: nn.Module, | |
| num_queries: int, | |
| panoptic_on: bool, | |
| object_mask_threshold: float, | |
| overlap_threshold: float, | |
| metadata, | |
| size_divisibility: int, | |
| sem_seg_postprocess_before_inference: bool, | |
| clip_ensemble: bool, | |
| clip_ensemble_weight: float, | |
| pixel_mean: Tuple[float], | |
| pixel_std: Tuple[float], | |
| ): | |
| """ | |
| Args: | |
| backbone: a backbone module, must follow detectron2's backbone interface | |
| sem_seg_head: a module that predicts semantic segmentation from backbone features | |
| criterion: a module that defines the loss | |
| clip_adapter: adapter for clip-based mask classification | |
| num_queries: int, number of queries | |
| panoptic_on: bool, whether to output panoptic segmentation prediction | |
| object_mask_threshold: float, threshold to filter query based on classification score | |
| for panoptic segmentation inference | |
| overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
| metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
| segmentation inference | |
| size_divisibility: Some backbones require the input height and width to be divisible by a | |
| specific integer. We can use this to override such requirement. | |
| sem_seg_postprocess_before_inference: whether to resize the prediction back | |
| to original input size before semantic segmentation inference or after. | |
| For high-resolution dataset like Mapillary, resizing predictions before | |
| inference will cause OOM error. | |
| pixel_mean, pixel_std: list or tuple with #channels element, representing | |
| the per-channel mean and std to be used to normalize the input image | |
| """ | |
| super().__init__( | |
| backbone=backbone, | |
| sem_seg_head=sem_seg_head, | |
| criterion=criterion, | |
| num_queries=num_queries, | |
| panoptic_on=panoptic_on, | |
| object_mask_threshold=object_mask_threshold, | |
| overlap_threshold=overlap_threshold, | |
| metadata=metadata, | |
| size_divisibility=size_divisibility, | |
| sem_seg_postprocess_before_inference=sem_seg_postprocess_before_inference, | |
| pixel_mean=pixel_mean, | |
| pixel_std=pixel_std, | |
| ) | |
| self.clip_adapter: ClipAdapter = clip_adapter | |
| self.clip_ensemble: bool = clip_ensemble | |
| self.clip_ensemble_weight: float = clip_ensemble_weight | |
| def from_config(cls, cfg): | |
| init_kwargs = MaskFormer.from_config(cfg) | |
| text_templates = build_text_prompt(cfg.MODEL.CLIP_ADAPTER) | |
| clip_adapter = MaskFormerClipAdapter( | |
| cfg.MODEL.CLIP_ADAPTER.CLIP_MODEL_NAME, | |
| text_templates, | |
| mask_fill=cfg.MODEL.CLIP_ADAPTER.MASK_FILL, | |
| mask_expand_ratio=cfg.MODEL.CLIP_ADAPTER.MASK_EXPAND_RATIO, | |
| mask_thr=cfg.MODEL.CLIP_ADAPTER.MASK_THR, | |
| mask_matting=cfg.MODEL.CLIP_ADAPTER.MASK_MATTING, | |
| region_resized=cfg.MODEL.CLIP_ADAPTER.REGION_RESIZED, | |
| mask_prompt_depth=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_DEPTH, | |
| mask_prompt_fwd=cfg.MODEL.CLIP_ADAPTER.MASK_PROMPT_FWD, | |
| ) | |
| init_kwargs["clip_adapter"] = clip_adapter | |
| init_kwargs["clip_ensemble"] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE | |
| init_kwargs[ | |
| "clip_ensemble_weight" | |
| ] = cfg.MODEL.CLIP_ADAPTER.CLIP_ENSEMBLE_WEIGHT | |
| return init_kwargs | |
| def forward(self, batched_inputs): | |
| """ | |
| Args: | |
| batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
| Each item in the list contains the inputs for one image. | |
| For now, each item in the list is a dict that contains: | |
| * "image": Tensor, image in (C, H, W) format. | |
| * "instances": per-region ground truth | |
| * Other information that's included in the original dicts, such as: | |
| "height", "width" (int): the output resolution of the model (may be different | |
| from input resolution), used in inference. | |
| Returns: | |
| list[dict]: | |
| each dict has the results for one image. The dict contains the following keys: | |
| * "sem_seg": | |
| A Tensor that represents the | |
| per-pixel segmentation prediced by the head. | |
| The prediction has shape KxHxW that represents the logits of | |
| each class for each pixel. | |
| * "panoptic_seg": | |
| A tuple that represent panoptic output | |
| panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
| segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
| Each dict contains keys "id", "category_id", "isthing". | |
| """ | |
| images = [x["image"].to(self.device) for x in batched_inputs] | |
| images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
| images = ImageList.from_tensors(images, self.size_divisibility) | |
| features = self.backbone(images.tensor) | |
| outputs = self.sem_seg_head(features) | |
| class_names = batched_inputs[0]["class_names"] | |
| if len(class_names) == 1: | |
| # Because classification is performed in a 'contrastive' manner, adding others to represent other concepts | |
| class_names.append('others') | |
| text_features = self.clip_adapter.get_text_features(class_names) | |
| outputs["pred_logits"] = self.clip_adapter.get_sim_logits( | |
| text_features, self.clip_adapter.normalize_feature(outputs["pred_logits"]) | |
| ) | |
| mask_cls_results = outputs["pred_logits"] | |
| mask_pred_results = outputs["pred_masks"] | |
| # upsample masks | |
| mask_pred_results = F.interpolate( | |
| mask_pred_results, | |
| size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
| mode="bilinear", | |
| align_corners=False, | |
| ) | |
| processed_results = [] | |
| for mask_cls_result, mask_pred_result, input_per_image, image_size in zip( | |
| mask_cls_results, mask_pred_results, batched_inputs, images.image_sizes | |
| ): | |
| height = image_size[0] | |
| width = image_size[1] | |
| mask_pred_result = sem_seg_postprocess( | |
| mask_pred_result, image_size, height, width | |
| ) | |
| image = input_per_image["image"].to(self.device) | |
| r, regions = self.demo_inference(mask_cls_result, mask_pred_result, image, class_names) | |
| height = input_per_image.get("height", image_size[0]) | |
| width = input_per_image.get("width", image_size[1]) | |
| r = sem_seg_postprocess(r, image_size, height, width) | |
| processed_results.append({"sem_seg": r}) | |
| return processed_results | |
| def demo_inference(self, mask_cls, mask_pred, image, class_names): | |
| mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
| mask_pred = mask_pred.sigmoid() | |
| regions = None | |
| if self.clip_ensemble: | |
| clip_cls, regions, valid_flag = self.clip_adapter( | |
| image, class_names, mask_pred, normalize=True | |
| ) | |
| if clip_cls is None: | |
| clip_cls = torch.empty(0, mask_cls.shape[-1] + 1, device=self.device) | |
| # softmax before index or after? | |
| clip_cls = F.softmax(clip_cls[:, :-1], dim=-1) | |
| if self.clip_ensemble_weight > 0: | |
| map_back_clip_cls = mask_cls.new_ones(mask_cls.shape) | |
| map_back_clip_cls[valid_flag] = clip_cls | |
| mask_cls = torch.pow(mask_cls, 1 - self.clip_ensemble_weight) * \ | |
| torch.pow(map_back_clip_cls, self.clip_ensemble_weight) | |
| else: | |
| # only clip model predictions are used | |
| mask_cls = clip_cls | |
| mask_pred = mask_pred[valid_flag] | |
| bin_mask = mask_pred > self.clip_adapter.mask_thr | |
| select_cls = torch.zeros(sum(valid_flag), mask_cls.shape[-1], device=self.device) | |
| select_mask = torch.argmax(mask_cls, dim=0) | |
| if len(class_names) == 2 and class_names[-1] == 'others': | |
| select_mask = select_mask[:-1] | |
| for idx in select_mask: | |
| select_cls[idx] = mask_cls[idx] | |
| semseg = torch.einsum("qc,qhw->chw", select_cls, bin_mask.float()) | |
| return semseg, regions | |