Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	
		JeffLiang
		
	commited on
		
		
					Commit 
							
							·
						
						0e0710e
	
1
								Parent(s):
							
							3b51872
								
update more examples
Browse files
    	
        app.py
    CHANGED
    
    | @@ -53,12 +53,12 @@ def inference(class_names, proposal_gen, granularity, input_img): | |
| 53 | 
             
                return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB')
         | 
| 54 |  | 
| 55 |  | 
| 56 | 
            -
            examples = [['Saturn V, toys, desk, sunflowers, white roses, chrysanthemums, carnations, green dianthus', 'Segment_Anything', 0.8, './resources/demo_samples/sample_01.jpeg'],
         | 
| 57 | 
            -
                        ['red bench, yellow bench, blue bench, brown bench, green bench, blue chair, yellow chair, green chair', 'Segment_Anything', 0.8, './resources/demo_samples/sample_04.png'],
         | 
| 58 | 
            -
                         | 
| 59 | 
            -
                         | 
| 60 | 
            -
                         | 
| 61 | 
            -
                        ]
         | 
| 62 | 
             
            output_labels = ['segmentation map']
         | 
| 63 |  | 
| 64 | 
             
            title = 'OVSeg (+ Segment_Anything)'
         | 
| @@ -83,11 +83,11 @@ Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP | |
| 83 | 
             
            gr.Interface(
         | 
| 84 | 
             
                inference,
         | 
| 85 | 
             
                inputs=[
         | 
| 86 | 
            -
                    gr. | 
| 87 | 
             
                        lines=1, placeholder=None, default='', label='class names'),
         | 
| 88 | 
            -
                    gr. | 
| 89 | 
            -
                    gr. | 
| 90 | 
            -
                    gr. | 
| 91 | 
             
                ],
         | 
| 92 | 
             
                outputs=gr.outputs.Image(label='segmentation map'),
         | 
| 93 | 
             
                title=title,
         | 
|  | |
| 53 | 
             
                return Image.fromarray(np.uint8(visualized_output.get_image())).convert('RGB')
         | 
| 54 |  | 
| 55 |  | 
| 56 | 
            +
            examples = [['Saturn V, toys, desk, wall, sunflowers, white roses, chrysanthemums, carnations, green dianthus', 'Segment_Anything', 0.8, './resources/demo_samples/sample_01.jpeg'],
         | 
| 57 | 
            +
                        ['red bench, yellow bench, blue bench, brown bench, green bench, blue chair, yellow chair, green chair, brown chair, yellow square painting, barrel, buddha statue', 'Segment_Anything', 0.8, './resources/demo_samples/sample_04.png'],
         | 
| 58 | 
            +
                        ['pillow, pipe, sweater, shirt, jeans jacket, shoes, cabinet, handbag, photo frame', 'Segment_Anything', 0.8, './resources/demo_samples/sample_05.png'],
         | 
| 59 | 
            +
                        ['Saturn V, toys, blossom', 'MaskFormer', 1.0, './resources/demo_samples/sample_01.jpeg'],
         | 
| 60 | 
            +
                        ['Oculus, Ukulele', 'MaskFormer', 1.0, './resources/demo_samples/sample_03.jpeg'],
         | 
| 61 | 
            +
                        ['Golden gate, yacht', 'MaskFormer', 1.0, './resources/demo_samples/sample_02.jpeg'],]
         | 
| 62 | 
             
            output_labels = ['segmentation map']
         | 
| 63 |  | 
| 64 | 
             
            title = 'OVSeg (+ Segment_Anything)'
         | 
|  | |
| 83 | 
             
            gr.Interface(
         | 
| 84 | 
             
                inference,
         | 
| 85 | 
             
                inputs=[
         | 
| 86 | 
            +
                    gr.Textbox(
         | 
| 87 | 
             
                        lines=1, placeholder=None, default='', label='class names'),
         | 
| 88 | 
            +
                    gr.Radio(["Segment_Anything", "MaskFormer"], label="Proposal generator", default="Segment_Anything"),
         | 
| 89 | 
            +
                    gr.Slider(0, 1.0, 0.8, label="For Segment_Anything only, granularity of masks from 0 (most coarse) to 1 (most precise)"),
         | 
| 90 | 
            +
                    gr.Image(type='filepath'),
         | 
| 91 | 
             
                ],
         | 
| 92 | 
             
                outputs=gr.outputs.Image(label='segmentation map'),
         | 
| 93 | 
             
                title=title,
         | 
    	
        open_vocab_seg/modeling/clip_adapter/utils.py
    CHANGED
    
    | @@ -62,8 +62,8 @@ def crop_with_mask( | |
| 62 | 
             
                new_image = torch.cat(
         | 
| 63 | 
             
                    [image.new_full((1, b - t, r - l), fill_value=val) for val in fill]
         | 
| 64 | 
             
                )
         | 
| 65 | 
            -
                 | 
| 66 | 
            -
                return image[:, t:b, l:r] * mask[None, t:b, l:r] + (~  | 
| 67 |  | 
| 68 |  | 
| 69 | 
             
            def build_clip_model(model: str, mask_prompt_depth: int = 0, frozen: bool = True):
         | 
|  | |
| 62 | 
             
                new_image = torch.cat(
         | 
| 63 | 
             
                    [image.new_full((1, b - t, r - l), fill_value=val) for val in fill]
         | 
| 64 | 
             
                )
         | 
| 65 | 
            +
                mask_bool = mask.bool()
         | 
| 66 | 
            +
                return image[:, t:b, l:r] * mask[None, t:b, l:r] + (~ mask_bool[None, t:b, l:r]) * new_image, mask[None, t:b, l:r]
         | 
| 67 |  | 
| 68 |  | 
| 69 | 
             
            def build_clip_model(model: str, mask_prompt_depth: int = 0, frozen: bool = True):
         | 
    	
        open_vocab_seg/utils/predictor.py
    CHANGED
    
    | @@ -173,7 +173,7 @@ class SAMVisualizationDemo(object): | |
| 173 | 
             
                    for bbox, mask in zip(bboxes, pred_masks):
         | 
| 174 | 
             
                        region, _ = crop_with_mask(
         | 
| 175 | 
             
                            image,
         | 
| 176 | 
            -
                            mask | 
| 177 | 
             
                            bbox,
         | 
| 178 | 
             
                            fill=mask_fill,
         | 
| 179 | 
             
                        )
         | 
|  | |
| 173 | 
             
                    for bbox, mask in zip(bboxes, pred_masks):
         | 
| 174 | 
             
                        region, _ = crop_with_mask(
         | 
| 175 | 
             
                            image,
         | 
| 176 | 
            +
                            mask,
         | 
| 177 | 
             
                            bbox,
         | 
| 178 | 
             
                            fill=mask_fill,
         | 
| 179 | 
             
                        )
         | 
    	
        resources/demo_samples/sample_05.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
