Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Migrate to gradio 4.x
Browse files- app.py +258 -337
- requirements.txt +1 -1
- style.css +1 -1
    	
        app.py
    CHANGED
    
    | @@ -1,6 +1,7 @@ | |
| 1 | 
             
            from __future__ import annotations
         | 
| 2 |  | 
| 3 | 
             
            import os
         | 
|  | |
| 4 |  | 
| 5 | 
             
            import gradio as gr
         | 
| 6 | 
             
            import numpy as np
         | 
| @@ -17,26 +18,20 @@ from lang_list import ( | |
| 17 | 
             
                TEXT_SOURCE_LANGUAGE_NAMES,
         | 
| 18 | 
             
            )
         | 
| 19 |  | 
| 20 | 
            -
             | 
|  | |
| 21 |  | 
| 22 | 
            -
            DESCRIPTION = """ | 
|  | |
| 23 |  | 
| 24 | 
             
            [SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
         | 
| 25 | 
             
            translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
         | 
| 26 | 
            -
             | 
| 27 | 
             
            This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
         | 
| 28 | 
             
            translation and more, without relying on multiple separate models.
         | 
| 29 | 
             
            """
         | 
| 30 |  | 
| 31 | 
             
            CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
         | 
| 32 |  | 
| 33 | 
            -
            TASK_NAMES = [
         | 
| 34 | 
            -
                "S2ST (Speech to Speech translation)",
         | 
| 35 | 
            -
                "S2TT (Speech to Text translation)",
         | 
| 36 | 
            -
                "T2ST (Text to Speech translation)",
         | 
| 37 | 
            -
                "T2TT (Text to Text translation)",
         | 
| 38 | 
            -
                "ASR (Automatic Speech Recognition)",
         | 
| 39 | 
            -
            ]
         | 
| 40 | 
             
            AUDIO_SAMPLE_RATE = 16000.0
         | 
| 41 | 
             
            MAX_INPUT_AUDIO_LENGTH = 60  # in seconds
         | 
| 42 | 
             
            DEFAULT_TARGET_LANGUAGE = "French"
         | 
| @@ -55,388 +50,314 @@ translator = Translator( | |
| 55 | 
             
            )
         | 
| 56 |  | 
| 57 |  | 
| 58 | 
            -
            def  | 
| 59 | 
            -
                 | 
| 60 | 
            -
                 | 
| 61 | 
            -
                 | 
| 62 | 
            -
                 | 
| 63 | 
            -
             | 
| 64 | 
            -
             | 
| 65 | 
            -
                 | 
| 66 | 
            -
            ) -> tuple[tuple[int, np.ndarray] | None, str]:
         | 
| 67 | 
            -
                task_name = task_name.split()[0]
         | 
| 68 | 
            -
                source_language_code = LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
         | 
| 69 | 
            -
                target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
         | 
| 70 |  | 
| 71 | 
            -
             | 
| 72 | 
            -
             | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
                        input_data = input_audio_file
         | 
| 76 | 
            -
             | 
| 77 | 
            -
                    arr, org_sr = torchaudio.load(input_data)
         | 
| 78 | 
            -
                    new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
         | 
| 79 | 
            -
                    max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
         | 
| 80 | 
            -
                    if new_arr.shape[1] > max_length:
         | 
| 81 | 
            -
                        new_arr = new_arr[:, :max_length]
         | 
| 82 | 
            -
                        gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
         | 
| 83 | 
            -
                    torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
         | 
| 84 | 
            -
                else:
         | 
| 85 | 
            -
                    input_data = input_text
         | 
| 86 | 
             
                out_texts, out_audios = translator.predict(
         | 
| 87 | 
            -
                    input= | 
| 88 | 
            -
                    task_str= | 
| 89 | 
             
                    tgt_lang=target_language_code,
         | 
| 90 | 
            -
                    src_lang=source_language_code,
         | 
| 91 | 
             
                )
         | 
| 92 | 
             
                out_text = str(out_texts[0])
         | 
| 93 | 
            -
             | 
| 94 | 
            -
                 | 
| 95 | 
            -
                    out_wav = out_audios.audio_wavs[0]
         | 
| 96 | 
            -
                    return (int(AUDIO_SAMPLE_RATE), out_wav.cpu().detach().numpy()), out_text
         | 
| 97 | 
            -
                else:
         | 
| 98 | 
            -
                    return None, out_text
         | 
| 99 | 
            -
             | 
| 100 | 
            -
             | 
| 101 | 
            -
            def process_s2st_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
         | 
| 102 | 
            -
                return predict(
         | 
| 103 | 
            -
                    task_name="S2ST",
         | 
| 104 | 
            -
                    audio_source="file",
         | 
| 105 | 
            -
                    input_audio_mic=None,
         | 
| 106 | 
            -
                    input_audio_file=input_audio_file,
         | 
| 107 | 
            -
                    input_text=None,
         | 
| 108 | 
            -
                    source_language=None,
         | 
| 109 | 
            -
                    target_language=target_language,
         | 
| 110 | 
            -
                )
         | 
| 111 |  | 
| 112 |  | 
| 113 | 
            -
            def  | 
| 114 | 
            -
                 | 
| 115 | 
            -
             | 
| 116 | 
            -
             | 
| 117 | 
            -
                     | 
| 118 | 
            -
                     | 
| 119 | 
            -
                     | 
| 120 | 
            -
                    source_language=None,
         | 
| 121 | 
            -
                    target_language=target_language,
         | 
| 122 | 
            -
                )
         | 
| 123 | 
            -
             | 
| 124 | 
            -
             | 
| 125 | 
            -
            def process_t2st_example(
         | 
| 126 | 
            -
                input_text: str, source_language: str, target_language: str
         | 
| 127 | 
            -
            ) -> tuple[tuple[int, np.ndarray] | None, str]:
         | 
| 128 | 
            -
                return predict(
         | 
| 129 | 
            -
                    task_name="T2ST",
         | 
| 130 | 
            -
                    audio_source="",
         | 
| 131 | 
            -
                    input_audio_mic=None,
         | 
| 132 | 
            -
                    input_audio_file=None,
         | 
| 133 | 
            -
                    input_text=input_text,
         | 
| 134 | 
            -
                    source_language=source_language,
         | 
| 135 | 
            -
                    target_language=target_language,
         | 
| 136 | 
             
                )
         | 
|  | |
| 137 |  | 
| 138 |  | 
| 139 | 
            -
            def  | 
| 140 | 
            -
                 | 
| 141 | 
            -
             | 
| 142 | 
            -
                 | 
| 143 | 
            -
                     | 
| 144 | 
            -
                     | 
| 145 | 
            -
                     | 
| 146 | 
            -
                     | 
| 147 | 
            -
                    input_text=input_text,
         | 
| 148 | 
            -
                    source_language=source_language,
         | 
| 149 | 
            -
                    target_language=target_language,
         | 
| 150 | 
             
                )
         | 
|  | |
|  | |
|  | |
| 151 |  | 
| 152 |  | 
| 153 | 
            -
            def  | 
| 154 | 
            -
                 | 
| 155 | 
            -
             | 
| 156 | 
            -
             | 
| 157 | 
            -
                     | 
| 158 | 
            -
                     | 
| 159 | 
            -
                     | 
| 160 | 
            -
                     | 
| 161 | 
            -
                    target_language=target_language,
         | 
| 162 | 
             
                )
         | 
|  | |
| 163 |  | 
| 164 |  | 
| 165 | 
            -
            def  | 
| 166 | 
            -
                 | 
| 167 | 
            -
                 | 
| 168 | 
            -
             | 
| 169 | 
            -
                     | 
|  | |
|  | |
| 170 | 
             
                )
         | 
|  | |
| 171 |  | 
| 172 |  | 
| 173 | 
            -
             | 
| 174 | 
            -
                 | 
| 175 | 
            -
             | 
| 176 | 
            -
             | 
| 177 | 
            -
                         | 
| 178 | 
            -
                         | 
| 179 | 
            -
                        gr.update(visible=False),  # source_language
         | 
| 180 | 
            -
                        gr.update(
         | 
| 181 | 
            -
                            visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
         | 
| 182 | 
            -
                        ),  # target_language
         | 
| 183 | 
            -
                    )
         | 
| 184 | 
            -
                elif task_name == "S2TT":
         | 
| 185 | 
            -
                    return (
         | 
| 186 | 
            -
                        gr.update(visible=True),  # audio_box
         | 
| 187 | 
            -
                        gr.update(visible=False),  # input_text
         | 
| 188 | 
            -
                        gr.update(visible=False),  # source_language
         | 
| 189 | 
            -
                        gr.update(
         | 
| 190 | 
            -
                            visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
         | 
| 191 | 
            -
                        ),  # target_language
         | 
| 192 | 
            -
                    )
         | 
| 193 | 
            -
                elif task_name == "T2ST":
         | 
| 194 | 
            -
                    return (
         | 
| 195 | 
            -
                        gr.update(visible=False),  # audio_box
         | 
| 196 | 
            -
                        gr.update(visible=True),  # input_text
         | 
| 197 | 
            -
                        gr.update(visible=True),  # source_language
         | 
| 198 | 
            -
                        gr.update(
         | 
| 199 | 
            -
                            visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
         | 
| 200 | 
            -
                        ),  # target_language
         | 
| 201 | 
            -
                    )
         | 
| 202 | 
            -
                elif task_name == "T2TT":
         | 
| 203 | 
            -
                    return (
         | 
| 204 | 
            -
                        gr.update(visible=False),  # audio_box
         | 
| 205 | 
            -
                        gr.update(visible=True),  # input_text
         | 
| 206 | 
            -
                        gr.update(visible=True),  # source_language
         | 
| 207 | 
            -
                        gr.update(
         | 
| 208 | 
            -
                            visible=True, choices=T2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
         | 
| 209 | 
            -
                        ),  # target_language
         | 
| 210 | 
             
                    )
         | 
| 211 | 
            -
             | 
| 212 | 
            -
                     | 
| 213 | 
            -
             | 
| 214 | 
            -
                         | 
| 215 | 
            -
                         | 
| 216 | 
            -
                         | 
| 217 | 
            -
             | 
| 218 | 
            -
                        ),  # target_language
         | 
| 219 | 
             
                    )
         | 
| 220 | 
            -
             | 
| 221 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 222 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 223 |  | 
| 224 | 
            -
             | 
| 225 | 
            -
                 | 
| 226 | 
            -
             | 
| 227 | 
            -
             | 
| 228 | 
            -
                         | 
| 229 | 
            -
                         | 
| 230 | 
            -
                    )
         | 
| 231 | 
            -
                elif task_name in ["S2TT", "T2TT", "ASR"]:
         | 
| 232 | 
            -
                    return (
         | 
| 233 | 
            -
                        gr.update(visible=False, value=None),  # output_audio
         | 
| 234 | 
            -
                        gr.update(value=None),  # output_text
         | 
| 235 | 
             
                    )
         | 
| 236 | 
            -
             | 
| 237 | 
            -
                     | 
| 238 | 
            -
             | 
| 239 | 
            -
             | 
| 240 | 
            -
             | 
| 241 | 
            -
             | 
| 242 | 
            -
             | 
| 243 | 
            -
             | 
| 244 | 
            -
             | 
| 245 | 
            -
             | 
| 246 | 
            -
                     | 
| 247 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
| 248 | 
             
                )
         | 
| 249 |  | 
| 250 | 
            -
             | 
| 251 | 
            -
             | 
| 252 | 
            -
             | 
| 253 | 
            -
             | 
| 254 | 
            -
                     | 
| 255 | 
            -
                    elem_id="duplicate-button",
         | 
| 256 | 
            -
                    visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
         | 
| 257 | 
             
                )
         | 
|  | |
|  | |
| 258 | 
             
                with gr.Group():
         | 
| 259 | 
            -
                    task_name = gr.Dropdown(
         | 
| 260 | 
            -
                        label="Task",
         | 
| 261 | 
            -
                        choices=TASK_NAMES,
         | 
| 262 | 
            -
                        value=TASK_NAMES[0],
         | 
| 263 | 
            -
                    )
         | 
| 264 | 
             
                    with gr.Row():
         | 
| 265 | 
             
                        source_language = gr.Dropdown(
         | 
| 266 | 
             
                            label="Source language",
         | 
| 267 | 
             
                            choices=TEXT_SOURCE_LANGUAGE_NAMES,
         | 
| 268 | 
             
                            value="English",
         | 
| 269 | 
            -
                            visible=False,
         | 
| 270 | 
             
                        )
         | 
| 271 | 
             
                        target_language = gr.Dropdown(
         | 
| 272 | 
             
                            label="Target language",
         | 
| 273 | 
            -
                            choices= | 
| 274 | 
             
                            value=DEFAULT_TARGET_LANGUAGE,
         | 
| 275 | 
             
                        )
         | 
| 276 | 
            -
                     | 
| 277 | 
            -
                        audio_source = gr.Radio(
         | 
| 278 | 
            -
                            label="Audio source",
         | 
| 279 | 
            -
                            choices=["file", "microphone"],
         | 
| 280 | 
            -
                            value="file",
         | 
| 281 | 
            -
                        )
         | 
| 282 | 
            -
                        input_audio_mic = gr.Audio(
         | 
| 283 | 
            -
                            label="Input speech",
         | 
| 284 | 
            -
                            type="filepath",
         | 
| 285 | 
            -
                            source="microphone",
         | 
| 286 | 
            -
                            visible=False,
         | 
| 287 | 
            -
                        )
         | 
| 288 | 
            -
                        input_audio_file = gr.Audio(
         | 
| 289 | 
            -
                            label="Input speech",
         | 
| 290 | 
            -
                            type="filepath",
         | 
| 291 | 
            -
                            source="upload",
         | 
| 292 | 
            -
                            visible=True,
         | 
| 293 | 
            -
                        )
         | 
| 294 | 
            -
                    input_text = gr.Textbox(label="Input text", visible=False)
         | 
| 295 | 
             
                    btn = gr.Button("Translate")
         | 
| 296 | 
            -
                     | 
| 297 | 
            -
                         | 
| 298 | 
            -
             | 
| 299 | 
            -
             | 
| 300 | 
            -
             | 
| 301 | 
            -
                            type="numpy",
         | 
| 302 | 
            -
                        )
         | 
| 303 | 
            -
                        output_text = gr.Textbox(label="Translated text")
         | 
| 304 | 
            -
             | 
| 305 | 
            -
                with gr.Row(visible=True) as s2st_example_row:
         | 
| 306 | 
            -
                    s2st_examples = gr.Examples(
         | 
| 307 | 
            -
                        examples=[
         | 
| 308 | 
            -
                            ["assets/sample_input.mp3", "French"],
         | 
| 309 | 
            -
                            ["assets/sample_input.mp3", "Mandarin Chinese"],
         | 
| 310 | 
            -
                            ["assets/sample_input_2.mp3", "Hindi"],
         | 
| 311 | 
            -
                            ["assets/sample_input_2.mp3", "Spanish"],
         | 
| 312 | 
            -
                        ],
         | 
| 313 | 
            -
                        inputs=[input_audio_file, target_language],
         | 
| 314 | 
            -
                        outputs=[output_audio, output_text],
         | 
| 315 | 
            -
                        fn=process_s2st_example,
         | 
| 316 | 
            -
                        cache_examples=CACHE_EXAMPLES,
         | 
| 317 | 
             
                    )
         | 
| 318 | 
            -
             | 
| 319 | 
            -
             | 
| 320 | 
            -
             | 
| 321 | 
            -
             | 
| 322 | 
            -
             | 
| 323 | 
            -
                             | 
| 324 | 
            -
                             | 
|  | |
| 325 | 
             
                        ],
         | 
| 326 | 
            -
                         | 
| 327 | 
            -
             | 
| 328 | 
            -
             | 
| 329 | 
            -
             | 
| 330 | 
            -
                    )
         | 
| 331 | 
            -
                with gr.Row(visible=False) as t2st_example_row:
         | 
| 332 | 
            -
                    t2st_examples = gr.Examples(
         | 
| 333 | 
            -
                        examples=[
         | 
| 334 | 
            -
                            ["My favorite animal is the elephant.", "English", "French"],
         | 
| 335 | 
            -
                            ["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
         | 
| 336 | 
            -
                            [
         | 
| 337 | 
            -
                                "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
         | 
| 338 | 
            -
                                "English",
         | 
| 339 | 
            -
                                "Hindi",
         | 
| 340 | 
            -
                            ],
         | 
| 341 | 
            -
                            [
         | 
| 342 | 
            -
                                "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
         | 
| 343 | 
            -
                                "English",
         | 
| 344 | 
            -
                                "Spanish",
         | 
| 345 | 
            -
                            ],
         | 
| 346 | 
             
                        ],
         | 
| 347 | 
            -
                         | 
| 348 | 
            -
             | 
| 349 | 
            -
             | 
| 350 | 
            -
             | 
| 351 | 
            -
                    )
         | 
| 352 | 
            -
                with gr.Row(visible=False) as t2tt_example_row:
         | 
| 353 | 
            -
                    t2tt_examples = gr.Examples(
         | 
| 354 | 
            -
                        examples=[
         | 
| 355 | 
            -
                            ["My favorite animal is the elephant.", "English", "French"],
         | 
| 356 | 
            -
                            ["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
         | 
| 357 | 
            -
                            [
         | 
| 358 | 
            -
                                "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
         | 
| 359 | 
            -
                                "English",
         | 
| 360 | 
            -
                                "Hindi",
         | 
| 361 | 
            -
                            ],
         | 
| 362 | 
            -
                            [
         | 
| 363 | 
            -
                                "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
         | 
| 364 | 
            -
                                "English",
         | 
| 365 | 
            -
                                "Spanish",
         | 
| 366 | 
            -
                            ],
         | 
| 367 | 
             
                        ],
         | 
| 368 | 
            -
                         | 
| 369 | 
            -
             | 
| 370 | 
            -
             | 
| 371 | 
            -
             | 
| 372 | 
            -
                    )
         | 
| 373 | 
            -
                with gr.Row(visible=False) as asr_example_row:
         | 
| 374 | 
            -
                    asr_examples = gr.Examples(
         | 
| 375 | 
            -
                        examples=[
         | 
| 376 | 
            -
                            ["assets/sample_input.mp3", "English"],
         | 
| 377 | 
            -
                            ["assets/sample_input_2.mp3", "English"],
         | 
| 378 | 
             
                        ],
         | 
| 379 | 
            -
                        inputs=[input_audio_file, target_language],
         | 
| 380 | 
            -
                        outputs=[output_audio, output_text],
         | 
| 381 | 
            -
                        fn=process_asr_example,
         | 
| 382 | 
            -
                        cache_examples=CACHE_EXAMPLES,
         | 
| 383 | 
            -
                    )
         | 
| 384 | 
            -
             | 
| 385 | 
            -
                audio_source.change(
         | 
| 386 | 
            -
                    fn=update_audio_ui,
         | 
| 387 | 
            -
                    inputs=audio_source,
         | 
| 388 | 
            -
                    outputs=[
         | 
| 389 | 
            -
                        input_audio_mic,
         | 
| 390 | 
            -
                        input_audio_file,
         | 
| 391 | 
             
                    ],
         | 
| 392 | 
            -
                     | 
|  | |
|  | |
|  | |
| 393 | 
             
                    api_name=False,
         | 
| 394 | 
             
                )
         | 
| 395 | 
            -
             | 
| 396 | 
            -
             | 
| 397 | 
            -
                     | 
| 398 | 
            -
                     | 
| 399 | 
            -
             | 
| 400 | 
            -
                        input_text,
         | 
| 401 | 
            -
                        source_language,
         | 
| 402 | 
            -
                        target_language,
         | 
| 403 | 
            -
                    ],
         | 
| 404 | 
            -
                    queue=False,
         | 
| 405 | 
            -
                    api_name=False,
         | 
| 406 | 
            -
                ).then(
         | 
| 407 | 
            -
                    fn=update_output_ui,
         | 
| 408 | 
            -
                    inputs=task_name,
         | 
| 409 | 
             
                    outputs=[output_audio, output_text],
         | 
| 410 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 411 | 
             
                    api_name=False,
         | 
| 412 | 
            -
                ) | 
| 413 | 
            -
             | 
| 414 | 
            -
             | 
| 415 | 
            -
                     | 
| 416 | 
            -
             | 
| 417 | 
            -
             | 
| 418 | 
            -
             | 
| 419 | 
            -
             | 
| 420 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 421 | 
             
                    ],
         | 
| 422 | 
            -
                     | 
|  | |
|  | |
|  | |
| 423 | 
             
                    api_name=False,
         | 
| 424 | 
             
                )
         | 
| 425 |  | 
| 426 | 
             
                btn.click(
         | 
| 427 | 
            -
                    fn= | 
| 428 | 
            -
                    inputs=[
         | 
| 429 | 
            -
             | 
| 430 | 
            -
             | 
| 431 | 
            -
             | 
| 432 | 
            -
             | 
| 433 | 
            -
             | 
| 434 | 
            -
             | 
| 435 | 
            -
             | 
| 436 | 
            -
             | 
| 437 | 
            -
                     | 
| 438 | 
            -
                     | 
|  | |
| 439 | 
             
                )
         | 
| 440 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 441 | 
             
            if __name__ == "__main__":
         | 
| 442 | 
             
                demo.queue(max_size=50).launch()
         | 
|  | |
| 1 | 
             
            from __future__ import annotations
         | 
| 2 |  | 
| 3 | 
             
            import os
         | 
| 4 | 
            +
            import pathlib
         | 
| 5 |  | 
| 6 | 
             
            import gradio as gr
         | 
| 7 | 
             
            import numpy as np
         | 
|  | |
| 18 | 
             
                TEXT_SOURCE_LANGUAGE_NAMES,
         | 
| 19 | 
             
            )
         | 
| 20 |  | 
| 21 | 
            +
            if not pathlib.Path("models").exists():
         | 
| 22 | 
            +
                snapshot_download(repo_id="meta-private/M4Tv2", repo_type="model", local_dir="models")
         | 
| 23 |  | 
| 24 | 
            +
            DESCRIPTION = """\
         | 
| 25 | 
            +
            # SeamlessM4T
         | 
| 26 |  | 
| 27 | 
             
            [SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
         | 
| 28 | 
             
            translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
         | 
|  | |
| 29 | 
             
            This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
         | 
| 30 | 
             
            translation and more, without relying on multiple separate models.
         | 
| 31 | 
             
            """
         | 
| 32 |  | 
| 33 | 
             
            CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
         | 
| 34 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 35 | 
             
            AUDIO_SAMPLE_RATE = 16000.0
         | 
| 36 | 
             
            MAX_INPUT_AUDIO_LENGTH = 60  # in seconds
         | 
| 37 | 
             
            DEFAULT_TARGET_LANGUAGE = "French"
         | 
|  | |
| 50 | 
             
            )
         | 
| 51 |  | 
| 52 |  | 
| 53 | 
            +
            def preprocess_audio(input_audio: str) -> None:
         | 
| 54 | 
            +
                arr, org_sr = torchaudio.load(input_audio)
         | 
| 55 | 
            +
                new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
         | 
| 56 | 
            +
                max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
         | 
| 57 | 
            +
                if new_arr.shape[1] > max_length:
         | 
| 58 | 
            +
                    new_arr = new_arr[:, :max_length]
         | 
| 59 | 
            +
                    gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
         | 
| 60 | 
            +
                torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
         | 
|  | |
|  | |
|  | |
|  | |
| 61 |  | 
| 62 | 
            +
             | 
| 63 | 
            +
            def run_s2st(input_audio: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
         | 
| 64 | 
            +
                preprocess_audio(input_audio)
         | 
| 65 | 
            +
                target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 66 | 
             
                out_texts, out_audios = translator.predict(
         | 
| 67 | 
            +
                    input=input_audio,
         | 
| 68 | 
            +
                    task_str="S2ST",
         | 
| 69 | 
             
                    tgt_lang=target_language_code,
         | 
|  | |
| 70 | 
             
                )
         | 
| 71 | 
             
                out_text = str(out_texts[0])
         | 
| 72 | 
            +
                out_wav = out_audios.audio_wavs[0].cpu().detach().numpy()
         | 
| 73 | 
            +
                return (int(AUDIO_SAMPLE_RATE), out_wav), out_text
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 74 |  | 
| 75 |  | 
| 76 | 
            +
            def run_s2tt(input_audio: str, target_language: str) -> str:
         | 
| 77 | 
            +
                preprocess_audio(input_audio)
         | 
| 78 | 
            +
                target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
         | 
| 79 | 
            +
                out_texts, _ = translator.predict(
         | 
| 80 | 
            +
                    input=input_audio,
         | 
| 81 | 
            +
                    task_str="S2TT",
         | 
| 82 | 
            +
                    tgt_lang=target_language_code,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 83 | 
             
                )
         | 
| 84 | 
            +
                return str(out_texts[0])
         | 
| 85 |  | 
| 86 |  | 
| 87 | 
            +
            def run_t2st(input_text: str, source_language: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
         | 
| 88 | 
            +
                source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
         | 
| 89 | 
            +
                target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
         | 
| 90 | 
            +
                out_texts, out_audios = translator.predict(
         | 
| 91 | 
            +
                    input=input_text,
         | 
| 92 | 
            +
                    task_str="T2ST",
         | 
| 93 | 
            +
                    tgt_lang=target_language_code,
         | 
| 94 | 
            +
                    src_lang=source_language_code,
         | 
|  | |
|  | |
|  | |
| 95 | 
             
                )
         | 
| 96 | 
            +
                out_text = str(out_texts[0])
         | 
| 97 | 
            +
                out_wav = out_audios.audio_wavs[0].cpu().detach().numpy()
         | 
| 98 | 
            +
                return (int(AUDIO_SAMPLE_RATE), out_wav), out_text
         | 
| 99 |  | 
| 100 |  | 
| 101 | 
            +
            def run_t2tt(input_text: str, source_language: str, target_language: str) -> str:
         | 
| 102 | 
            +
                source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
         | 
| 103 | 
            +
                target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
         | 
| 104 | 
            +
                out_texts, _ = translator.predict(
         | 
| 105 | 
            +
                    input=input_text,
         | 
| 106 | 
            +
                    task_str="T2TT",
         | 
| 107 | 
            +
                    tgt_lang=target_language_code,
         | 
| 108 | 
            +
                    src_lang=source_language_code,
         | 
|  | |
| 109 | 
             
                )
         | 
| 110 | 
            +
                return str(out_texts[0])
         | 
| 111 |  | 
| 112 |  | 
| 113 | 
            +
            def run_asr(input_audio: str, target_language: str) -> str:
         | 
| 114 | 
            +
                preprocess_audio(input_audio)
         | 
| 115 | 
            +
                target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
         | 
| 116 | 
            +
                out_texts, _ = translator.predict(
         | 
| 117 | 
            +
                    input=input_audio,
         | 
| 118 | 
            +
                    task_str="ASR",
         | 
| 119 | 
            +
                    tgt_lang=target_language_code,
         | 
| 120 | 
             
                )
         | 
| 121 | 
            +
                return str(out_texts[0])
         | 
| 122 |  | 
| 123 |  | 
| 124 | 
            +
            with gr.Blocks() as demo_s2st:
         | 
| 125 | 
            +
                with gr.Group():
         | 
| 126 | 
            +
                    target_language = gr.Dropdown(
         | 
| 127 | 
            +
                        label="Target language",
         | 
| 128 | 
            +
                        choices=S2ST_TARGET_LANGUAGE_NAMES,
         | 
| 129 | 
            +
                        value=DEFAULT_TARGET_LANGUAGE,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 130 | 
             
                    )
         | 
| 131 | 
            +
                    input_audio = gr.Audio(label="Input speech", type="filepath")
         | 
| 132 | 
            +
                    btn = gr.Button("Translate")
         | 
| 133 | 
            +
                    output_audio = gr.Audio(
         | 
| 134 | 
            +
                        label="Translated speech",
         | 
| 135 | 
            +
                        autoplay=False,
         | 
| 136 | 
            +
                        streaming=False,
         | 
| 137 | 
            +
                        type="numpy",
         | 
|  | |
| 138 | 
             
                    )
         | 
| 139 | 
            +
                    output_text = gr.Textbox(label="Translated text")
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                gr.Examples(
         | 
| 142 | 
            +
                    examples=[
         | 
| 143 | 
            +
                        ["assets/sample_input.mp3", "French"],
         | 
| 144 | 
            +
                        ["assets/sample_input.mp3", "Mandarin Chinese"],
         | 
| 145 | 
            +
                        ["assets/sample_input_2.mp3", "Hindi"],
         | 
| 146 | 
            +
                        ["assets/sample_input_2.mp3", "Spanish"],
         | 
| 147 | 
            +
                    ],
         | 
| 148 | 
            +
                    inputs=[input_audio, target_language],
         | 
| 149 | 
            +
                    outputs=[output_audio, output_text],
         | 
| 150 | 
            +
                    fn=run_s2st,
         | 
| 151 | 
            +
                    cache_examples=CACHE_EXAMPLES,
         | 
| 152 | 
            +
                    api_name=False,
         | 
| 153 | 
            +
                )
         | 
| 154 |  | 
| 155 | 
            +
                btn.click(
         | 
| 156 | 
            +
                    fn=run_s2st,
         | 
| 157 | 
            +
                    inputs=[input_audio, target_language],
         | 
| 158 | 
            +
                    outputs=[output_audio, output_text],
         | 
| 159 | 
            +
                    api_name="s2st",
         | 
| 160 | 
            +
                )
         | 
| 161 |  | 
| 162 | 
            +
            with gr.Blocks() as demo_s2tt:
         | 
| 163 | 
            +
                with gr.Group():
         | 
| 164 | 
            +
                    target_language = gr.Dropdown(
         | 
| 165 | 
            +
                        label="Target language",
         | 
| 166 | 
            +
                        choices=S2TT_TARGET_LANGUAGE_NAMES,
         | 
| 167 | 
            +
                        value=DEFAULT_TARGET_LANGUAGE,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 168 | 
             
                    )
         | 
| 169 | 
            +
                    input_audio = gr.Audio(label="Input speech", type="filepath")
         | 
| 170 | 
            +
                    btn = gr.Button("Translate")
         | 
| 171 | 
            +
                    output_text = gr.Textbox(label="Translated text")
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                gr.Examples(
         | 
| 174 | 
            +
                    examples=[
         | 
| 175 | 
            +
                        ["assets/sample_input.mp3", "French"],
         | 
| 176 | 
            +
                        ["assets/sample_input.mp3", "Mandarin Chinese"],
         | 
| 177 | 
            +
                        ["assets/sample_input_2.mp3", "Hindi"],
         | 
| 178 | 
            +
                        ["assets/sample_input_2.mp3", "Spanish"],
         | 
| 179 | 
            +
                    ],
         | 
| 180 | 
            +
                    inputs=[input_audio, target_language],
         | 
| 181 | 
            +
                    outputs=output_text,
         | 
| 182 | 
            +
                    fn=run_s2tt,
         | 
| 183 | 
            +
                    cache_examples=CACHE_EXAMPLES,
         | 
| 184 | 
            +
                    api_name=False,
         | 
| 185 | 
             
                )
         | 
| 186 |  | 
| 187 | 
            +
                btn.click(
         | 
| 188 | 
            +
                    fn=run_s2tt,
         | 
| 189 | 
            +
                    inputs=[input_audio, target_language],
         | 
| 190 | 
            +
                    outputs=output_text,
         | 
| 191 | 
            +
                    api_name="s2tt",
         | 
|  | |
|  | |
| 192 | 
             
                )
         | 
| 193 | 
            +
             | 
| 194 | 
            +
            with gr.Blocks() as demo_t2st:
         | 
| 195 | 
             
                with gr.Group():
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 196 | 
             
                    with gr.Row():
         | 
| 197 | 
             
                        source_language = gr.Dropdown(
         | 
| 198 | 
             
                            label="Source language",
         | 
| 199 | 
             
                            choices=TEXT_SOURCE_LANGUAGE_NAMES,
         | 
| 200 | 
             
                            value="English",
         | 
|  | |
| 201 | 
             
                        )
         | 
| 202 | 
             
                        target_language = gr.Dropdown(
         | 
| 203 | 
             
                            label="Target language",
         | 
| 204 | 
            +
                            choices=T2TT_TARGET_LANGUAGE_NAMES,
         | 
| 205 | 
             
                            value=DEFAULT_TARGET_LANGUAGE,
         | 
| 206 | 
             
                        )
         | 
| 207 | 
            +
                    input_text = gr.Textbox(label="Input text")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 208 | 
             
                    btn = gr.Button("Translate")
         | 
| 209 | 
            +
                    output_audio = gr.Audio(
         | 
| 210 | 
            +
                        label="Translated speech",
         | 
| 211 | 
            +
                        autoplay=False,
         | 
| 212 | 
            +
                        streaming=False,
         | 
| 213 | 
            +
                        type="numpy",
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 214 | 
             
                    )
         | 
| 215 | 
            +
                    output_text = gr.Textbox(label="Translated text")
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                gr.Examples(
         | 
| 218 | 
            +
                    examples=[
         | 
| 219 | 
            +
                        [
         | 
| 220 | 
            +
                            "My favorite animal is the elephant.",
         | 
| 221 | 
            +
                            "English",
         | 
| 222 | 
            +
                            "French",
         | 
| 223 | 
             
                        ],
         | 
| 224 | 
            +
                        [
         | 
| 225 | 
            +
                            "My favorite animal is the elephant.",
         | 
| 226 | 
            +
                            "English",
         | 
| 227 | 
            +
                            "Mandarin Chinese",
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 228 | 
             
                        ],
         | 
| 229 | 
            +
                        [
         | 
| 230 | 
            +
                            "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
         | 
| 231 | 
            +
                            "English",
         | 
| 232 | 
            +
                            "Hindi",
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 233 | 
             
                        ],
         | 
| 234 | 
            +
                        [
         | 
| 235 | 
            +
                            "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
         | 
| 236 | 
            +
                            "English",
         | 
| 237 | 
            +
                            "Spanish",
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 238 | 
             
                        ],
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 239 | 
             
                    ],
         | 
| 240 | 
            +
                    inputs=[input_text, source_language, target_language],
         | 
| 241 | 
            +
                    outputs=[output_audio, output_text],
         | 
| 242 | 
            +
                    fn=run_t2st,
         | 
| 243 | 
            +
                    cache_examples=CACHE_EXAMPLES,
         | 
| 244 | 
             
                    api_name=False,
         | 
| 245 | 
             
                )
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                gr.on(
         | 
| 248 | 
            +
                    triggers=[input_text.submit, btn.click],
         | 
| 249 | 
            +
                    fn=run_t2st,
         | 
| 250 | 
            +
                    inputs=[input_text, source_language, target_language],
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 251 | 
             
                    outputs=[output_audio, output_text],
         | 
| 252 | 
            +
                    api_name="t2st",
         | 
| 253 | 
            +
                )
         | 
| 254 | 
            +
             | 
| 255 | 
            +
            with gr.Blocks() as demo_t2tt:
         | 
| 256 | 
            +
                with gr.Group():
         | 
| 257 | 
            +
                    with gr.Row():
         | 
| 258 | 
            +
                        source_language = gr.Dropdown(
         | 
| 259 | 
            +
                            label="Source language",
         | 
| 260 | 
            +
                            choices=TEXT_SOURCE_LANGUAGE_NAMES,
         | 
| 261 | 
            +
                            value="English",
         | 
| 262 | 
            +
                        )
         | 
| 263 | 
            +
                        target_language = gr.Dropdown(
         | 
| 264 | 
            +
                            label="Target language",
         | 
| 265 | 
            +
                            choices=T2TT_TARGET_LANGUAGE_NAMES,
         | 
| 266 | 
            +
                            value=DEFAULT_TARGET_LANGUAGE,
         | 
| 267 | 
            +
                        )
         | 
| 268 | 
            +
                    input_text = gr.Textbox(label="Input text")
         | 
| 269 | 
            +
                    btn = gr.Button("Translate")
         | 
| 270 | 
            +
                    output_text = gr.Textbox(label="Translated text")
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                gr.Examples(
         | 
| 273 | 
            +
                    examples=[
         | 
| 274 | 
            +
                        [
         | 
| 275 | 
            +
                            "My favorite animal is the elephant.",
         | 
| 276 | 
            +
                            "English",
         | 
| 277 | 
            +
                            "French",
         | 
| 278 | 
            +
                        ],
         | 
| 279 | 
            +
                        [
         | 
| 280 | 
            +
                            "My favorite animal is the elephant.",
         | 
| 281 | 
            +
                            "English",
         | 
| 282 | 
            +
                            "Mandarin Chinese",
         | 
| 283 | 
            +
                        ],
         | 
| 284 | 
            +
                        [
         | 
| 285 | 
            +
                            "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
         | 
| 286 | 
            +
                            "English",
         | 
| 287 | 
            +
                            "Hindi",
         | 
| 288 | 
            +
                        ],
         | 
| 289 | 
            +
                        [
         | 
| 290 | 
            +
                            "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
         | 
| 291 | 
            +
                            "English",
         | 
| 292 | 
            +
                            "Spanish",
         | 
| 293 | 
            +
                        ],
         | 
| 294 | 
            +
                    ],
         | 
| 295 | 
            +
                    inputs=[input_text, source_language, target_language],
         | 
| 296 | 
            +
                    outputs=output_text,
         | 
| 297 | 
            +
                    fn=run_t2tt,
         | 
| 298 | 
            +
                    cache_examples=CACHE_EXAMPLES,
         | 
| 299 | 
             
                    api_name=False,
         | 
| 300 | 
            +
                )
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                gr.on(
         | 
| 303 | 
            +
                    triggers=[input_text.submit, btn.click],
         | 
| 304 | 
            +
                    fn=run_t2tt,
         | 
| 305 | 
            +
                    inputs=[input_text, source_language, target_language],
         | 
| 306 | 
            +
                    outputs=output_text,
         | 
| 307 | 
            +
                    api_name="t2tt",
         | 
| 308 | 
            +
                )
         | 
| 309 | 
            +
             | 
| 310 | 
            +
            with gr.Blocks() as demo_asr:
         | 
| 311 | 
            +
                with gr.Group():
         | 
| 312 | 
            +
                    target_language = gr.Dropdown(
         | 
| 313 | 
            +
                        label="Target language",
         | 
| 314 | 
            +
                        choices=S2ST_TARGET_LANGUAGE_NAMES,
         | 
| 315 | 
            +
                        value=DEFAULT_TARGET_LANGUAGE,
         | 
| 316 | 
            +
                    )
         | 
| 317 | 
            +
                    input_audio = gr.Audio(label="Input speech", type="filepath")
         | 
| 318 | 
            +
                    btn = gr.Button("Translate")
         | 
| 319 | 
            +
                    output_text = gr.Textbox(label="Translated text")
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                gr.Examples(
         | 
| 322 | 
            +
                    examples=[
         | 
| 323 | 
            +
                        ["assets/sample_input.mp3", "English"],
         | 
| 324 | 
            +
                        ["assets/sample_input_2.mp3", "English"],
         | 
| 325 | 
             
                    ],
         | 
| 326 | 
            +
                    inputs=[input_audio, target_language],
         | 
| 327 | 
            +
                    outputs=output_text,
         | 
| 328 | 
            +
                    fn=run_asr,
         | 
| 329 | 
            +
                    cache_examples=CACHE_EXAMPLES,
         | 
| 330 | 
             
                    api_name=False,
         | 
| 331 | 
             
                )
         | 
| 332 |  | 
| 333 | 
             
                btn.click(
         | 
| 334 | 
            +
                    fn=run_asr,
         | 
| 335 | 
            +
                    inputs=[input_audio, target_language],
         | 
| 336 | 
            +
                    outputs=output_text,
         | 
| 337 | 
            +
                    api_name="asr",
         | 
| 338 | 
            +
                )
         | 
| 339 | 
            +
             | 
| 340 | 
            +
             | 
| 341 | 
            +
            with gr.Blocks(css="style.css") as demo:
         | 
| 342 | 
            +
                gr.Markdown(DESCRIPTION)
         | 
| 343 | 
            +
                gr.DuplicateButton(
         | 
| 344 | 
            +
                    value="Duplicate Space for private use",
         | 
| 345 | 
            +
                    elem_id="duplicate-button",
         | 
| 346 | 
            +
                    visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
         | 
| 347 | 
             
                )
         | 
| 348 |  | 
| 349 | 
            +
                with gr.Tabs():
         | 
| 350 | 
            +
                    with gr.Tab(label="S2ST"):
         | 
| 351 | 
            +
                        demo_s2st.render()
         | 
| 352 | 
            +
                    with gr.Tab(label="S2TT"):
         | 
| 353 | 
            +
                        demo_s2tt.render()
         | 
| 354 | 
            +
                    with gr.Tab(label="T2ST"):
         | 
| 355 | 
            +
                        demo_t2st.render()
         | 
| 356 | 
            +
                    with gr.Tab(label="T2TT"):
         | 
| 357 | 
            +
                        demo_t2tt.render()
         | 
| 358 | 
            +
                    with gr.Tab(label="ASR"):
         | 
| 359 | 
            +
                        demo_asr.render()
         | 
| 360 | 
            +
             | 
| 361 | 
            +
             | 
| 362 | 
             
            if __name__ == "__main__":
         | 
| 363 | 
             
                demo.queue(max_size=50).launch()
         | 
    	
        requirements.txt
    CHANGED
    
    | @@ -1,4 +1,4 @@ | |
| 1 | 
            -
            gradio==3. | 
| 2 | 
             
            omegaconf==2.3.0
         | 
| 3 | 
             
            torch==2.1.0
         | 
| 4 | 
             
            torchaudio==2.1.0
         | 
|  | |
| 1 | 
            +
            gradio==4.3.0
         | 
| 2 | 
             
            omegaconf==2.3.0
         | 
| 3 | 
             
            torch==2.1.0
         | 
| 4 | 
             
            torchaudio==2.1.0
         | 
    	
        style.css
    CHANGED
    
    | @@ -9,7 +9,7 @@ h1 { | |
| 9 | 
             
              border-radius: 100vh;
         | 
| 10 | 
             
            }
         | 
| 11 |  | 
| 12 | 
            -
             | 
| 13 | 
             
              max-width: 730px;
         | 
| 14 | 
             
              margin: auto;
         | 
| 15 | 
             
              padding-top: 1.5rem;
         | 
|  | |
| 9 | 
             
              border-radius: 100vh;
         | 
| 10 | 
             
            }
         | 
| 11 |  | 
| 12 | 
            +
            .contain {
         | 
| 13 | 
             
              max-width: 730px;
         | 
| 14 | 
             
              margin: auto;
         | 
| 15 | 
             
              padding-top: 1.5rem;
         | 
 
			
