Spaces:
Paused
Paused
| import os | |
| import cv2 | |
| import torch | |
| import numpy as np | |
| import gradio as gr | |
| import trimesh | |
| import sys | |
| import os | |
| sys.path.append('vggsfm_code/') | |
| import shutil | |
| from vggsfm_code.hf_demo import demo_fn | |
| from omegaconf import DictConfig, OmegaConf | |
| from viz_utils.viz_fn import add_camera | |
| # | |
| from scipy.spatial.transform import Rotation | |
| import PIL | |
| import spaces | |
| def vggsfm_demo( | |
| input_image, | |
| input_video, | |
| query_frame_num, | |
| max_query_pts | |
| # grid_size: int = 10, | |
| ): | |
| cfg_file = "vggsfm_code/cfgs/demo.yaml" | |
| cfg = OmegaConf.load(cfg_file) | |
| max_input_image = 20 | |
| target_dir = f"input_images" | |
| if os.path.exists(target_dir): | |
| shutil.rmtree(target_dir) | |
| os.makedirs(target_dir) | |
| target_dir_images = target_dir + "/images" | |
| os.makedirs(target_dir_images) | |
| if input_image is not None: | |
| if len(input_image)<3: | |
| return None, "Please input at least three frames" | |
| input_image = sorted(input_image) | |
| input_image = input_image[:max_input_image] | |
| # Copy files to the new directory | |
| for file_name in input_image: | |
| shutil.copy(file_name, target_dir_images) | |
| elif input_video is not None: | |
| vs = cv2.VideoCapture(input_video) | |
| fps = vs.get(cv2.CAP_PROP_FPS) | |
| frame_rate = 1 | |
| frame_interval = int(fps * frame_rate) | |
| video_frame_num = 0 | |
| count = 0 | |
| while video_frame_num<=max_input_image: | |
| (gotit, frame) = vs.read() | |
| count +=1 | |
| if count % frame_interval == 0: | |
| cv2.imwrite(target_dir_images+"/"+f"{video_frame_num:06}.png", frame) | |
| video_frame_num+=1 | |
| if not gotit: | |
| break | |
| if video_frame_num<3: | |
| return None, "Please input at least three frames" | |
| else: | |
| return None, "Input format incorrect" | |
| cfg.query_frame_num = query_frame_num | |
| cfg.max_query_pts = max_query_pts | |
| print(f"Files have been copied to {target_dir_images}") | |
| cfg.SCENE_DIR = target_dir | |
| predictions = demo_fn(cfg) | |
| glbfile = vggsfm_predictions_to_glb(predictions) | |
| print(input_image) | |
| print(input_video) | |
| return glbfile, "Success" | |
| def vggsfm_predictions_to_glb(predictions): | |
| # learned from https://github.com/naver/dust3r/blob/main/dust3r/viz.py | |
| points3D = predictions["points3D"].cpu().numpy() | |
| points3D_rgb = predictions["points3D_rgb"].cpu().numpy() | |
| points3D_rgb = (points3D_rgb*255).astype(np.uint8) | |
| extrinsics_opencv = predictions["extrinsics_opencv"].cpu().numpy() | |
| intrinsics_opencv = predictions["intrinsics_opencv"].cpu().numpy() | |
| raw_image_paths = predictions["raw_image_paths"] | |
| images = predictions["images"].permute(0,2,3,1).cpu().numpy() | |
| images = (images*255).astype(np.uint8) | |
| glbscene = trimesh.Scene() | |
| point_cloud = trimesh.PointCloud(points3D, colors=points3D_rgb) | |
| glbscene.add_geometry(point_cloud) | |
| camera_edge_colors = [(255, 0, 0), (0, 0, 255), (0, 255, 0), (255, 0, 255), (255, 204, 0), (0, 204, 204), | |
| (128, 255, 255), (255, 128, 255), (255, 255, 128), (0, 0, 0), (128, 128, 128)] | |
| frame_num = len(extrinsics_opencv) | |
| extrinsics_opencv_4x4 = np.zeros((frame_num, 4, 4)) | |
| extrinsics_opencv_4x4[:, :3, :4] = extrinsics_opencv | |
| extrinsics_opencv_4x4[:, 3, 3] = 1 | |
| for idx in range(frame_num): | |
| cam_from_world = extrinsics_opencv_4x4[idx] | |
| cam_to_world = np.linalg.inv(cam_from_world) | |
| cur_cam_color = camera_edge_colors[idx % len(camera_edge_colors)] | |
| cur_focal = intrinsics_opencv[idx, 0, 0] | |
| # cur_image_path = raw_image_paths[idx] | |
| # cur_image = np.array(PIL.Image.open(cur_image_path)) | |
| # add_camera(glbscene, cam_to_world, cur_cam_color, image=None, imsize=cur_image.shape[1::-1], | |
| # focal=None,screen_width=0.3) | |
| add_camera(glbscene, cam_to_world, cur_cam_color, image=None, imsize=(1024,1024), | |
| focal=None,screen_width=0.35) | |
| opengl_mat = np.array([[1, 0, 0, 0], | |
| [0, -1, 0, 0], | |
| [0, 0, -1, 0], | |
| [0, 0, 0, 1]]) | |
| rot = np.eye(4) | |
| rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix() | |
| glbscene.apply_transform(np.linalg.inv(np.linalg.inv(extrinsics_opencv_4x4[0]) @ opengl_mat @ rot)) | |
| glbfile = "glbscene.glb" | |
| glbscene.export(file_obj=glbfile) | |
| return glbfile | |
| if True: | |
| demo = gr.Interface( | |
| title="🎨 VGGSfM: Visual Geometry Grounded Deep Structure From Motion", | |
| description="<div style='text-align: left;'> \ | |
| <p>Welcome to <a href='https://github.com/facebookresearch/vggsfm' target='_blank'>VGGSfM</a>!", | |
| fn=vggsfm_demo, | |
| inputs=[ | |
| gr.File(file_count="multiple", label="Input Images", interactive=True), | |
| gr.Video(label="Input video", interactive=True), | |
| gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Number of query images"), | |
| gr.Slider(minimum=512, maximum=4096, step=1, value=1024, label="Number of query points"), | |
| ], | |
| outputs=[gr.Model3D(label="Reconstruction"), gr.Textbox(label="Log")], | |
| cache_examples=True, | |
| allow_flagging=False, | |
| ) | |
| demo.queue(max_size=20, concurrency_count=1).launch(debug=True) | |
| # demo.launch(debug=True, share=True) | |
| else: | |
| import glob | |
| files = glob.glob(f'vggsfm_code/examples/cake/images/*', recursive=True) | |
| vggsfm_demo(files, None, None) | |
| # demo.queue(max_size=20, concurrency_count=1).launch(debug=True, share=True) | |