Spaces:
Sleeping
Sleeping
| from langchain_community.vectorstores import SKLearnVectorStore | |
| from langchain_community.embeddings.fastembed import FastEmbedEmbeddings | |
| class VectorStoreManager: | |
| def __init__(self, embedding_model="BAAI/bge-base-en-v1.5"): | |
| self.embeddings = FastEmbedEmbeddings(model_name=embedding_model) | |
| def create_vector_store(self): | |
| """Create a new vector store""" | |
| vector_store = SKLearnVectorStore( | |
| metric="cosine", | |
| embedding=self.embeddings, | |
| ) | |
| return vector_store | |
| def index_documents(self, documents): | |
| """Index documents into vector store""" | |
| vector_store = self.create_vector_store() | |
| vector_store.add_documents(documents=documents) | |
| return vector_store | |