agentic-rag / src /indexing /vectore_store.py
fahmiaziz98
Fix vector store creation method to use correct initialization
82b6d3b
raw
history blame contribute delete
768 Bytes
from langchain_community.vectorstores import SKLearnVectorStore
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
class VectorStoreManager:
def __init__(self, embedding_model="BAAI/bge-base-en-v1.5"):
self.embeddings = FastEmbedEmbeddings(model_name=embedding_model)
def create_vector_store(self):
"""Create a new vector store"""
vector_store = SKLearnVectorStore(
metric="cosine",
embedding=self.embeddings,
)
return vector_store
def index_documents(self, documents):
"""Index documents into vector store"""
vector_store = self.create_vector_store()
vector_store.add_documents(documents=documents)
return vector_store