Spaces:
Running
Running
fahmiaziz98
commited on
Commit
·
ba900f0
1
Parent(s):
8bb0a69
commat cammit 1
Browse files- app.py +56 -2
- requirements.txt +11 -0
- src/indexing/__init__.py +0 -0
- src/indexing/document_processor.py +16 -0
- src/indexing/vectore_store.py +23 -0
- src/retriever/__init__.py +0 -0
- src/retriever/retriever.py +34 -0
app.py
CHANGED
|
@@ -1,4 +1,58 @@
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
import streamlit as st
|
| 3 |
+
from src.indexing.document_processor import DocumentProcessor
|
| 4 |
+
from src.indexing.vectore_store import VectorStoreManager
|
| 5 |
+
from src.retriever.retriever import RetrieverManager
|
| 6 |
|
| 7 |
+
UPLOAD_FOLDER = "uploads/"
|
| 8 |
+
PERSIST_DIRECTORY = "chroma_db/"
|
| 9 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 10 |
+
os.makedirs(PERSIST_DIRECTORY, exist_ok=True)
|
| 11 |
+
|
| 12 |
+
if "messages" not in st.session_state:
|
| 13 |
+
st.session_state.messages = []
|
| 14 |
+
if "retriever" not in st.session_state:
|
| 15 |
+
st.session_state.retriever = None
|
| 16 |
+
if "vector_store" not in st.session_state:
|
| 17 |
+
st.session_state.vector_store = None
|
| 18 |
+
|
| 19 |
+
st.set_page_config(
|
| 20 |
+
page_title="RAG Chatbot",
|
| 21 |
+
layout="wide",
|
| 22 |
+
page_icon="📘",
|
| 23 |
+
)
|
| 24 |
+
st.title("Agentic RAG Chatbot")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
with st.sidebar:
|
| 28 |
+
st.header("PDF Upload")
|
| 29 |
+
uploaded_file = st.file_uploader("Upload your PDF", type=["pdf"])
|
| 30 |
+
st.info("Supported file type: PDF")
|
| 31 |
+
|
| 32 |
+
if uploaded_file:
|
| 33 |
+
with st.spinner("Processing PDF..."):
|
| 34 |
+
|
| 35 |
+
file_path = os.path.join(UPLOAD_FOLDER, uploaded_file.name)
|
| 36 |
+
with open(file_path, "wb") as f:
|
| 37 |
+
f.write(uploaded_file.getbuffer())
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
doc_processor = DocumentProcessor()
|
| 41 |
+
chunks = doc_processor.load_and_split_pdf(file_path)
|
| 42 |
+
|
| 43 |
+
# Buat vector store
|
| 44 |
+
vector_store_manager = VectorStoreManager()
|
| 45 |
+
vector_store = vector_store_manager.index_documents(
|
| 46 |
+
documents=chunks,
|
| 47 |
+
collection_name=uploaded_file.name,
|
| 48 |
+
persist_directory=PERSIST_DIRECTORY
|
| 49 |
+
)
|
| 50 |
+
st.session_state.vector_store = vector_store
|
| 51 |
+
|
| 52 |
+
# Setup retriever
|
| 53 |
+
retriever_manager = RetrieverManager(vector_store)
|
| 54 |
+
base_retriever = retriever_manager.create_base_retriever()
|
| 55 |
+
compression_retriever = retriever_manager.create_compression_retriever(base_retriever)
|
| 56 |
+
st.session_state.retriever = compression_retriever
|
| 57 |
+
|
| 58 |
+
st.success("File processed successfully!")
|
requirements.txt
CHANGED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langchain
|
| 2 |
+
langgraph
|
| 3 |
+
langchain-huggingface
|
| 4 |
+
langchain-google-genai
|
| 5 |
+
google-ai-generativelanguage==0.6.15
|
| 6 |
+
langchain-community
|
| 7 |
+
langchain-chroma
|
| 8 |
+
pypdf
|
| 9 |
+
tiktoken
|
| 10 |
+
rank_bm25
|
| 11 |
+
flashrank
|
src/indexing/__init__.py
ADDED
|
File without changes
|
src/indexing/document_processor.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 2 |
+
from langchain.document_loaders import PyPDFLoader
|
| 3 |
+
|
| 4 |
+
class DocumentProcessor:
|
| 5 |
+
def __init__(self, chunk_size=500, chunk_overlap=100):
|
| 6 |
+
self.text_splitter = RecursiveCharacterTextSplitter(
|
| 7 |
+
chunk_size=chunk_size,
|
| 8 |
+
chunk_overlap=chunk_overlap
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
def load_and_split_pdf(self, file_path: str):
|
| 12 |
+
"""Load PDF and split into chunks"""
|
| 13 |
+
loader = PyPDFLoader(file_path)
|
| 14 |
+
docs = loader.load()
|
| 15 |
+
chunks = self.text_splitter.split_documents(docs)
|
| 16 |
+
return chunks
|
src/indexing/vectore_store.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 2 |
+
from langchain_chroma import Chroma
|
| 3 |
+
|
| 4 |
+
class VectorStoreManager:
|
| 5 |
+
def __init__(self, embedding_model="intfloat/multilingual-e5-small"):
|
| 6 |
+
self.embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
|
| 7 |
+
|
| 8 |
+
def create_vector_store(self, collection_name="my_collection", persist_directory=None):
|
| 9 |
+
"""Create a new vector store"""
|
| 10 |
+
store_params = {
|
| 11 |
+
"collection_name": collection_name,
|
| 12 |
+
"embedding_function": self.embeddings,
|
| 13 |
+
}
|
| 14 |
+
if persist_directory:
|
| 15 |
+
store_params["persist_directory"] = persist_directory
|
| 16 |
+
|
| 17 |
+
return Chroma(**store_params)
|
| 18 |
+
|
| 19 |
+
def index_documents(self, documents, collection_name="my_collection", persist_directory=None):
|
| 20 |
+
"""Index documents into vector store"""
|
| 21 |
+
vector_store = self.create_vector_store(collection_name, persist_directory)
|
| 22 |
+
vector_store.add_documents(documents=documents)
|
| 23 |
+
return vector_store
|
src/retriever/__init__.py
ADDED
|
File without changes
|
src/retriever/retriever.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.retrievers import BM25Retriever, EnsembleRetriever
|
| 2 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 3 |
+
from langchain.retrievers.document_compressors import FlashrankRerank
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class RetrieverManager:
|
| 7 |
+
def __init__(self, vector_store):
|
| 8 |
+
self.vector_store = vector_store
|
| 9 |
+
|
| 10 |
+
def create_base_retriever(self, search_type="similarity", k=3):
|
| 11 |
+
"""Create basic vector store retriever"""
|
| 12 |
+
return self.vector_store.as_retriever(
|
| 13 |
+
search_type=search_type,
|
| 14 |
+
search_kwargs={"k": k}
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
def create_ensemble_retriever(self, texts, vector_weight=0.5, keyword_weight=0.5):
|
| 18 |
+
"""Create ensemble retriever combining vector and keyword search"""
|
| 19 |
+
vector_retriever = self.create_base_retriever()
|
| 20 |
+
keyword_retriever = BM25Retriever.from_documents(texts)
|
| 21 |
+
keyword_retriever.k = 3
|
| 22 |
+
|
| 23 |
+
return EnsembleRetriever(
|
| 24 |
+
retrievers=[vector_retriever, keyword_retriever],
|
| 25 |
+
weights=[vector_weight, keyword_weight]
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
def create_compression_retriever(self, base_retriever, top_n=5):
|
| 29 |
+
"""Create compression retriever with reranking"""
|
| 30 |
+
compressor = FlashrankRerank(top_n=top_n)
|
| 31 |
+
return ContextualCompressionRetriever(
|
| 32 |
+
base_compressor=compressor,
|
| 33 |
+
base_retriever=base_retriever
|
| 34 |
+
)
|