Spaces:
Running
Running
| #!pip install -qqq datasets==3.5.0 | |
| import gradio as gr | |
| import torch | |
| from transformers import pipeline | |
| from datasets import load_dataset | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| device | |
| #from google.colab import userdata | |
| #userdata.get('llama_easyread') | |
| # map the image (description text) -> block of text | |
| # <block>paragraph 1</block> | |
| # <block>paragraph 2</block> | |
| # description text of image -> (pass to embedding model) -> get vector embedding | => Compute cosine similarity -> we get similarity score 0-1 (1 means the same 0 means not the same) | |
| # paragraph 1 -> (pass to embedding model) -> get vector embedding | | |
| model_id = "meta-llama/Llama-3.2-1B-Instruct" | |
| pipe = pipeline( | |
| "text-generation", | |
| model=model_id, | |
| device=device, | |
| torch_dtype=torch.bfloat16 if "cuda" in device else torch.float32, | |
| ) | |
| messages = [ | |
| {"role":"system", "content": "You're a helpful EasyRead Assistant the simplifies complex documents or content. Follow the easy read guidelines. Only provide the simiplied content, for complex terms in the simplified text, always add a footnote for definitions."} | |
| ] | |
| def add_and_generate(history, text): | |
| messages.append({"role":"user","content": text}) | |
| prompt = pipe.tokenizer.apply_chat_template( | |
| messages, tokenize=False, add_generation_prompt=True | |
| ) | |
| # print(prompt) | |
| out = pipe(prompt, max_new_tokens=150, do_sample=True, temperature=0.7, top_p=0.9) | |
| reply = out[0]["generated_text"][len(prompt):] | |
| messages.append({"role":"assistant","content":reply}) | |
| history.append((text, reply)) | |
| return history, "" | |
| with gr.Blocks() as demo: | |
| chatbot = gr.Chatbot() | |
| txt = gr.Textbox(placeholder="Type here...") | |
| txt.submit(add_and_generate, [chatbot, txt], [chatbot, txt]) | |
| demo.launch(debug=True) |