Spaces:
Runtime error
Runtime error
| """ | |
| Manage tab for Video Model Studio UI | |
| """ | |
| import gradio as gr | |
| import logging | |
| import shutil | |
| from pathlib import Path | |
| from typing import Dict, Any, List, Optional | |
| from vms.utils import BaseTab, validate_model_repo | |
| from vms.config import ( | |
| HF_API_TOKEN, VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, | |
| TRAINING_PATH, MODEL_PATH, OUTPUT_PATH, LOG_FILE_PATH, USE_LARGE_DATASET | |
| ) | |
| logger = logging.getLogger(__name__) | |
| class ManageTab(BaseTab): | |
| """Manage tab for storage management and model publication""" | |
| def __init__(self, app_state): | |
| super().__init__(app_state) | |
| self.id = "manage_tab" | |
| self.title = "5️⃣ Storage" | |
| def create(self, parent=None) -> gr.TabItem: | |
| """Create the Manage tab UI components""" | |
| with gr.TabItem(self.title, id=self.id) as tab: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("## 🏦 Backup your model") | |
| gr.Markdown("There is currently a bug, you might have to click multiple times to trigger a download.") | |
| with gr.Row(): | |
| self.components["download_dataset_btn"] = gr.DownloadButton( | |
| "📦 Download training dataset (.zip)", | |
| variant="secondary", | |
| size="lg", | |
| visible=not USE_LARGE_DATASET | |
| ) | |
| # If we have a large dataset, display a message explaining why download is disabled | |
| if USE_LARGE_DATASET: | |
| gr.Markdown("📦 Training dataset download disabled for large datasets") | |
| self.components["download_model_btn"] = gr.DownloadButton( | |
| "🧠 Download weights (.safetensors)", | |
| variant="secondary", | |
| size="lg" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("## 📡 Publish your model") | |
| gr.Markdown("You model can be pushed to Hugging Face (this will use HF_API_TOKEN)") | |
| with gr.Row(): | |
| with gr.Column(): | |
| self.components["repo_id"] = gr.Textbox( | |
| label="HuggingFace Model Repository", | |
| placeholder="username/model-name", | |
| info="The repository will be created if it doesn't exist" | |
| ) | |
| self.components["make_public"] = gr.Checkbox( | |
| label="Check this to make your model public (ie. visible and downloadable by anyone)", | |
| info="You model is private by default" | |
| ) | |
| self.components["push_model_btn"] = gr.Button( | |
| "Push my model" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("## ♻️ Delete your data") | |
| gr.Markdown("Make sure you have made a backup first.") | |
| gr.Markdown("If you are deleting because of a bug, remember you can use the Developer Mode on HF to inspect the working directory (in /data or .data)") | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("### 🧽 Delete specific data") | |
| gr.Markdown("You can selectively delete either the dataset and/or the last model data.") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| self.components["delete_dataset_btn"] = gr.Button( | |
| "🚨 Delete dataset (images, video, captions)", | |
| variant="secondary" | |
| ) | |
| self.components["delete_dataset_status"] = gr.Textbox( | |
| label="Delete Dataset Status", | |
| interactive=False, | |
| visible=False | |
| ) | |
| with gr.Column(scale=1): | |
| self.components["delete_model_btn"] = gr.Button( | |
| "🚨 Delete model (checkpoints, weights, config)", | |
| variant="secondary" | |
| ) | |
| self.components["delete_model_status"] = gr.Textbox( | |
| label="Delete Model Status", | |
| interactive=False, | |
| visible=False | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Markdown("### ☢️ Nuke all project data") | |
| gr.Markdown("This will nuke the original dataset (all images, videos and captions), the training dataset, and the model outputs (weights, checkpoints, settings). So use with care!") | |
| with gr.Row(): | |
| self.components["global_stop_btn"] = gr.Button( | |
| "🚨 Delete all project data and models (are you sure?!)", | |
| variant="stop" | |
| ) | |
| self.components["global_status"] = gr.Textbox( | |
| label="Global Status", | |
| interactive=False, | |
| visible=False | |
| ) | |
| return tab | |
| def connect_events(self) -> None: | |
| """Connect event handlers to UI components""" | |
| # Repository ID validation | |
| self.components["repo_id"].change( | |
| fn=self.validate_repo, | |
| inputs=[self.components["repo_id"]], | |
| outputs=[self.components["repo_id"]] | |
| ) | |
| # Download buttons | |
| self.components["download_dataset_btn"].click( | |
| fn=self.app.training.create_training_dataset_zip, | |
| outputs=[self.components["download_dataset_btn"]] | |
| ) | |
| self.components["download_model_btn"].click( | |
| fn=self.app.training.get_model_output_safetensors, | |
| outputs=[self.components["download_model_btn"]] | |
| ) | |
| # New delete dataset button | |
| self.components["delete_dataset_btn"].click( | |
| fn=self.delete_dataset, | |
| outputs=[ | |
| self.components["delete_dataset_status"], | |
| self.app.tabs["caption_tab"].components["training_dataset"] | |
| ] | |
| ) | |
| # New delete model button | |
| self.components["delete_model_btn"].click( | |
| fn=self.delete_model, | |
| outputs=[ | |
| self.components["delete_model_status"], | |
| self.app.tabs["train_tab"].components["status_box"] | |
| ] | |
| ) | |
| # Global stop button | |
| self.components["global_stop_btn"].click( | |
| fn=self.handle_global_stop, | |
| outputs=[ | |
| self.components["global_status"], | |
| self.app.tabs["caption_tab"].components["training_dataset"], | |
| self.app.tabs["train_tab"].components["status_box"], | |
| self.app.tabs["train_tab"].components["log_box"], | |
| self.app.tabs["import_tab"].components["import_status"], | |
| self.app.tabs["caption_tab"].components["preview_status"] | |
| ] | |
| ) | |
| # Push model button | |
| self.components["push_model_btn"].click( | |
| fn=lambda repo_id: self.upload_to_hub(repo_id), | |
| inputs=[self.components["repo_id"]], | |
| outputs=[self.components["global_status"]] | |
| ) | |
| def validate_repo(self, repo_id: str) -> gr.update: | |
| """Validate repository ID for HuggingFace Hub""" | |
| validation = validate_model_repo(repo_id) | |
| if validation["error"]: | |
| return gr.update(value=repo_id, error=validation["error"]) | |
| return gr.update(value=repo_id, error=None) | |
| def upload_to_hub(self, repo_id: str) -> str: | |
| """Upload model to HuggingFace Hub""" | |
| if not repo_id: | |
| return "Error: Repository ID is required" | |
| # Validate repository name | |
| validation = validate_model_repo(repo_id) | |
| if validation["error"]: | |
| return f"Error: {validation['error']}" | |
| # Check if we have a model to upload | |
| if not self.app.training.get_model_output_safetensors(): | |
| return "Error: No model found to upload" | |
| # Upload model to hub | |
| success = self.app.training.upload_to_hub(OUTPUT_PATH, repo_id) | |
| if success: | |
| return f"Successfully uploaded model to {repo_id}" | |
| else: | |
| return f"Failed to upload model to {repo_id}" | |
| def delete_dataset(self): | |
| """Delete dataset files (images, videos, captions)""" | |
| status_messages = {} | |
| try: | |
| # Stop captioning if running | |
| if self.app.captioning: | |
| self.app.captioning.stop_captioning() | |
| status_messages["captioning"] = "Captioning stopped" | |
| # Stop scene detection if running | |
| if self.app.splitting.is_processing(): | |
| self.app.splitting.processing = False | |
| status_messages["splitting"] = "Scene detection stopped" | |
| # Clear dataset directories | |
| for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH]: | |
| if path.exists(): | |
| try: | |
| shutil.rmtree(path) | |
| path.mkdir(parents=True, exist_ok=True) | |
| except Exception as e: | |
| status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}" | |
| else: | |
| status_messages[f"clear_{path.name}"] = f"Cleared {path.name}" | |
| # Reset any relevant persistent state | |
| self.app.tabs["caption_tab"]._should_stop_captioning = True | |
| self.app.splitting.processing = False | |
| # Format response | |
| details = "\n".join(f"{k}: {v}" for k, v in status_messages.items()) | |
| message = f"Dataset deleted successfully\n\nDetails:\n{details}" | |
| # Get fresh lists after cleanup | |
| clips = self.app.tabs["caption_tab"].list_training_files_to_caption() | |
| return gr.update(value=message, visible=True), clips | |
| except Exception as e: | |
| error_message = f"Error deleting dataset: {str(e)}\n\nDetails:\n{status_messages}" | |
| return gr.update(value=error_message, visible=True), self.app.tabs["caption_tab"].list_training_files_to_caption() | |
| def delete_model(self): | |
| """Delete model files (checkpoints, weights, configuration)""" | |
| status_messages = {} | |
| try: | |
| # Stop training if running | |
| if self.app.training.is_training_running(): | |
| training_result = self.app.training.stop_training() | |
| status_messages["training"] = training_result["status"] | |
| # Clear model output directory | |
| if OUTPUT_PATH.exists(): | |
| try: | |
| shutil.rmtree(OUTPUT_PATH) | |
| OUTPUT_PATH.mkdir(parents=True, exist_ok=True) | |
| except Exception as e: | |
| status_messages[f"clear_{OUTPUT_PATH.name}"] = f"Error clearing {OUTPUT_PATH.name}: {str(e)}" | |
| else: | |
| status_messages[f"clear_{OUTPUT_PATH.name}"] = f"Cleared {OUTPUT_PATH.name}" | |
| # Properly close logging before clearing log file | |
| if self.app.training.file_handler: | |
| self.app.training.file_handler.close() | |
| logger.removeHandler(self.app.training.file_handler) | |
| self.app.training.file_handler = None | |
| if LOG_FILE_PATH.exists(): | |
| LOG_FILE_PATH.unlink() | |
| # Reset training UI state | |
| self.app.training.setup_logging() | |
| # Format response | |
| details = "\n".join(f"{k}: {v}" for k, v in status_messages.items()) | |
| message = f"Model deleted successfully\n\nDetails:\n{details}" | |
| return gr.update(value=message, visible=True), "Model files have been deleted" | |
| except Exception as e: | |
| error_message = f"Error deleting model: {str(e)}\n\nDetails:\n{status_messages}" | |
| return gr.update(value=error_message, visible=True), f"Error deleting model: {str(e)}" | |
| def handle_global_stop(self): | |
| """Handle the global stop button click""" | |
| result = self.stop_all_and_clear() | |
| # Format the details for display | |
| status = result["status"] | |
| details = "\n".join(f"{k}: {v}" for k, v in result["details"].items()) | |
| full_status = f"{status}\n\nDetails:\n{details}" | |
| # Get fresh lists after cleanup | |
| clips = self.app.tabs["caption_tab"].list_training_files_to_caption() | |
| return { | |
| self.components["global_status"]: gr.update(value=full_status, visible=True), | |
| self.app.tabs["caption_tab"].components["training_dataset"]: clips, | |
| self.app.tabs["train_tab"].components["status_box"]: "Training stopped and data cleared", | |
| self.app.tabs["train_tab"].components["log_box"]: "", | |
| self.app.tabs["import_tab"].components["import_status"]: "All data cleared", | |
| self.app.tabs["caption_tab"].components["preview_status"]: "Captioning stopped" | |
| } | |
| def stop_all_and_clear(self) -> Dict[str, str]: | |
| """Stop all running processes and clear data | |
| Returns: | |
| Dict with status messages for different components | |
| """ | |
| status_messages = {} | |
| try: | |
| # Stop training if running | |
| if self.app.training.is_training_running(): | |
| training_result = self.app.training.stop_training() | |
| status_messages["training"] = training_result["status"] | |
| # Stop captioning if running | |
| if self.app.captioning: | |
| self.app.captioning.stop_captioning() | |
| status_messages["captioning"] = "Captioning stopped" | |
| # Stop scene detection if running | |
| if self.app.splitting.is_processing(): | |
| self.app.splitting.processing = False | |
| status_messages["splitting"] = "Scene detection stopped" | |
| # Properly close logging before clearing log file | |
| if self.app.training.file_handler: | |
| self.app.training.file_handler.close() | |
| logger.removeHandler(self.app.training.file_handler) | |
| self.app.training.file_handler = None | |
| if LOG_FILE_PATH.exists(): | |
| LOG_FILE_PATH.unlink() | |
| # Clear all data directories | |
| for path in [VIDEOS_TO_SPLIT_PATH, STAGING_PATH, TRAINING_VIDEOS_PATH, TRAINING_PATH, | |
| MODEL_PATH, OUTPUT_PATH]: | |
| if path.exists(): | |
| try: | |
| shutil.rmtree(path) | |
| path.mkdir(parents=True, exist_ok=True) | |
| except Exception as e: | |
| status_messages[f"clear_{path.name}"] = f"Error clearing {path.name}: {str(e)}" | |
| else: | |
| status_messages[f"clear_{path.name}"] = f"Cleared {path.name}" | |
| # Reset any persistent state | |
| self.app.tabs["caption_tab"]._should_stop_captioning = True | |
| self.app.splitting.processing = False | |
| # Recreate logging setup | |
| self.app.training.setup_logging() | |
| return { | |
| "status": "All processes stopped and data cleared", | |
| "details": status_messages | |
| } | |
| except Exception as e: | |
| return { | |
| "status": f"Error during cleanup: {str(e)}", | |
| "details": status_messages | |
| } |