Spaces:
Runtime error
Runtime error
Julian Bilcke
commited on
Commit
·
947f205
1
Parent(s):
32b4f0f
ready for the demo
Browse files- .gitignore +1 -0
- app.py +21 -13
- finetrainers_utils.py +7 -3
- training_log_parser.py +1 -1
- training_service.py +72 -13
.gitignore
CHANGED
|
@@ -6,3 +6,4 @@ __pycache__
|
|
| 6 |
*.mp4
|
| 7 |
*.zip
|
| 8 |
training_service.log
|
|
|
|
|
|
| 6 |
*.mp4
|
| 7 |
*.zip
|
| 8 |
training_service.log
|
| 9 |
+
wandb/
|
app.py
CHANGED
|
@@ -125,8 +125,6 @@ class VideoTrainerUI:
|
|
| 125 |
# Stop captioning if running
|
| 126 |
if self.captioner:
|
| 127 |
self.captioner.stop_captioning()
|
| 128 |
-
#self.captioner.close()
|
| 129 |
-
#self.captioner = None
|
| 130 |
status_messages["captioning"] = "Captioning stopped"
|
| 131 |
|
| 132 |
# Stop scene detection if running
|
|
@@ -134,6 +132,12 @@ class VideoTrainerUI:
|
|
| 134 |
self.splitter.processing = False
|
| 135 |
status_messages["splitting"] = "Scene detection stopped"
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
if LOG_FILE_PATH.exists():
|
| 138 |
LOG_FILE_PATH.unlink()
|
| 139 |
|
|
@@ -153,6 +157,9 @@ class VideoTrainerUI:
|
|
| 153 |
self._should_stop_captioning = True
|
| 154 |
self.splitter.processing = False
|
| 155 |
|
|
|
|
|
|
|
|
|
|
| 156 |
return {
|
| 157 |
"status": "All processes stopped and data cleared",
|
| 158 |
"details": status_messages
|
|
@@ -163,7 +170,7 @@ class VideoTrainerUI:
|
|
| 163 |
"status": f"Error during cleanup: {str(e)}",
|
| 164 |
"details": status_messages
|
| 165 |
}
|
| 166 |
-
|
| 167 |
def update_titles(self) -> Tuple[Any]:
|
| 168 |
"""Update all dynamic titles with current counts
|
| 169 |
|
|
@@ -664,20 +671,20 @@ class VideoTrainerUI:
|
|
| 664 |
with gr.TabItem("1️⃣ Import", id="import_tab"):
|
| 665 |
|
| 666 |
with gr.Row():
|
| 667 |
-
gr.Markdown("##
|
| 668 |
|
| 669 |
with gr.Row():
|
| 670 |
enable_automatic_video_split = gr.Checkbox(
|
| 671 |
label="Automatically split videos into smaller clips",
|
| 672 |
info="Note: a clip is a single camera shot, usually a few seconds",
|
| 673 |
value=True,
|
| 674 |
-
visible=
|
| 675 |
)
|
| 676 |
enable_automatic_content_captioning = gr.Checkbox(
|
| 677 |
label="Automatically caption photos and videos",
|
| 678 |
info="Note: this uses LlaVA and takes some extra time to load and process",
|
| 679 |
value=False,
|
| 680 |
-
visible=
|
| 681 |
)
|
| 682 |
|
| 683 |
with gr.Row():
|
|
@@ -889,13 +896,14 @@ class VideoTrainerUI:
|
|
| 889 |
interactive=False,
|
| 890 |
lines=4
|
| 891 |
)
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
|
|
|
| 899 |
|
| 900 |
with gr.TabItem("5️⃣ Manage"):
|
| 901 |
|
|
|
|
| 125 |
# Stop captioning if running
|
| 126 |
if self.captioner:
|
| 127 |
self.captioner.stop_captioning()
|
|
|
|
|
|
|
| 128 |
status_messages["captioning"] = "Captioning stopped"
|
| 129 |
|
| 130 |
# Stop scene detection if running
|
|
|
|
| 132 |
self.splitter.processing = False
|
| 133 |
status_messages["splitting"] = "Scene detection stopped"
|
| 134 |
|
| 135 |
+
# Properly close logging before clearing log file
|
| 136 |
+
if self.trainer.file_handler:
|
| 137 |
+
self.trainer.file_handler.close()
|
| 138 |
+
logger.removeHandler(self.trainer.file_handler)
|
| 139 |
+
self.trainer.file_handler = None
|
| 140 |
+
|
| 141 |
if LOG_FILE_PATH.exists():
|
| 142 |
LOG_FILE_PATH.unlink()
|
| 143 |
|
|
|
|
| 157 |
self._should_stop_captioning = True
|
| 158 |
self.splitter.processing = False
|
| 159 |
|
| 160 |
+
# Recreate logging setup
|
| 161 |
+
self.trainer.setup_logging()
|
| 162 |
+
|
| 163 |
return {
|
| 164 |
"status": "All processes stopped and data cleared",
|
| 165 |
"details": status_messages
|
|
|
|
| 170 |
"status": f"Error during cleanup: {str(e)}",
|
| 171 |
"details": status_messages
|
| 172 |
}
|
| 173 |
+
|
| 174 |
def update_titles(self) -> Tuple[Any]:
|
| 175 |
"""Update all dynamic titles with current counts
|
| 176 |
|
|
|
|
| 671 |
with gr.TabItem("1️⃣ Import", id="import_tab"):
|
| 672 |
|
| 673 |
with gr.Row():
|
| 674 |
+
gr.Markdown("## Automatic splitting and captioning")
|
| 675 |
|
| 676 |
with gr.Row():
|
| 677 |
enable_automatic_video_split = gr.Checkbox(
|
| 678 |
label="Automatically split videos into smaller clips",
|
| 679 |
info="Note: a clip is a single camera shot, usually a few seconds",
|
| 680 |
value=True,
|
| 681 |
+
visible=True
|
| 682 |
)
|
| 683 |
enable_automatic_content_captioning = gr.Checkbox(
|
| 684 |
label="Automatically caption photos and videos",
|
| 685 |
info="Note: this uses LlaVA and takes some extra time to load and process",
|
| 686 |
value=False,
|
| 687 |
+
visible=True,
|
| 688 |
)
|
| 689 |
|
| 690 |
with gr.Row():
|
|
|
|
| 896 |
interactive=False,
|
| 897 |
lines=4
|
| 898 |
)
|
| 899 |
+
with gr.Accordion("See training logs"):
|
| 900 |
+
log_box = gr.TextArea(
|
| 901 |
+
label="Finetrainers output (see HF Space logs for more details)",
|
| 902 |
+
interactive=False,
|
| 903 |
+
lines=40,
|
| 904 |
+
max_lines=200,
|
| 905 |
+
autoscroll=True
|
| 906 |
+
)
|
| 907 |
|
| 908 |
with gr.TabItem("5️⃣ Manage"):
|
| 909 |
|
finetrainers_utils.py
CHANGED
|
@@ -115,9 +115,13 @@ def copy_files_to_training_dir(prompt_prefix: str) -> int:
|
|
| 115 |
|
| 116 |
# make sure we only copy over VALID pairs
|
| 117 |
if caption:
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
prepare_finetrainers_dataset()
|
| 123 |
|
|
|
|
| 115 |
|
| 116 |
# make sure we only copy over VALID pairs
|
| 117 |
if caption:
|
| 118 |
+
try:
|
| 119 |
+
target_caption_path.write_text(caption)
|
| 120 |
+
shutil.copy2(file_path, target_file_path)
|
| 121 |
+
nb_copied_pairs += 1
|
| 122 |
+
except Exception as e:
|
| 123 |
+
print(f"failed to copy one of the pairs: {e}")
|
| 124 |
+
pass
|
| 125 |
|
| 126 |
prepare_finetrainers_dataset()
|
| 127 |
|
training_log_parser.py
CHANGED
|
@@ -71,7 +71,7 @@ class TrainingLogParser:
|
|
| 71 |
# Training step progress line example:
|
| 72 |
# Training steps: 1%|▏ | 1/70 [00:14<16:11, 14.08s/it, grad_norm=0.00789, step_loss=0.555, lr=3e-7]
|
| 73 |
|
| 74 |
-
if ("Started training" in line) or (
|
| 75 |
self.state.status = "training"
|
| 76 |
|
| 77 |
if "Training steps:" in line:
|
|
|
|
| 71 |
# Training step progress line example:
|
| 72 |
# Training steps: 1%|▏ | 1/70 [00:14<16:11, 14.08s/it, grad_norm=0.00789, step_loss=0.555, lr=3e-7]
|
| 73 |
|
| 74 |
+
if ("Started training" in line) or ("Starting training" in line):
|
| 75 |
self.state.status = "training"
|
| 76 |
|
| 77 |
if "Training steps:" in line:
|
training_service.py
CHANGED
|
@@ -23,15 +23,6 @@ from config import TrainingConfig, LOG_FILE_PATH, TRAINING_VIDEOS_PATH, STORAGE_
|
|
| 23 |
from utils import make_archive, parse_training_log, is_image_file, is_video_file
|
| 24 |
from finetrainers_utils import prepare_finetrainers_dataset, copy_files_to_training_dir
|
| 25 |
|
| 26 |
-
# Configure logging
|
| 27 |
-
logging.basicConfig(
|
| 28 |
-
level=logging.INFO,
|
| 29 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 30 |
-
handlers=[
|
| 31 |
-
logging.StreamHandler(sys.stdout),
|
| 32 |
-
logging.FileHandler(str(LOG_FILE_PATH))
|
| 33 |
-
]
|
| 34 |
-
)
|
| 35 |
logger = logging.getLogger(__name__)
|
| 36 |
|
| 37 |
class TrainingService:
|
|
@@ -41,8 +32,69 @@ class TrainingService:
|
|
| 41 |
self.status_file = OUTPUT_PATH / "status.json"
|
| 42 |
self.pid_file = OUTPUT_PATH / "training.pid"
|
| 43 |
self.log_file = OUTPUT_PATH / "training.log"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
logger.info("Training service initialized")
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def save_session(self, params: Dict) -> None:
|
| 47 |
"""Save training session parameters"""
|
| 48 |
session_data = {
|
|
@@ -73,7 +125,7 @@ class TrainingService:
|
|
| 73 |
try:
|
| 74 |
with open(self.status_file, 'r') as f:
|
| 75 |
status = json.load(f)
|
| 76 |
-
print("status found in the json:", status)
|
| 77 |
|
| 78 |
# Check if process is actually running
|
| 79 |
if self.pid_file.exists():
|
|
@@ -81,7 +133,7 @@ class TrainingService:
|
|
| 81 |
pid = int(f.read().strip())
|
| 82 |
if not psutil.pid_exists(pid):
|
| 83 |
# Process died unexpectedly
|
| 84 |
-
if status['status'] == '
|
| 85 |
status['status'] = 'error'
|
| 86 |
status['message'] = 'Training process terminated unexpectedly'
|
| 87 |
self.append_log("Training process terminated unexpectedly")
|
|
@@ -302,7 +354,7 @@ class TrainingService:
|
|
| 302 |
# Update initial training status
|
| 303 |
total_steps = num_epochs * (max(1, video_count) // batch_size)
|
| 304 |
self.save_status(
|
| 305 |
-
state='
|
| 306 |
epoch=0,
|
| 307 |
step=0,
|
| 308 |
total_steps=total_steps,
|
|
@@ -389,7 +441,7 @@ class TrainingService:
|
|
| 389 |
|
| 390 |
if psutil.pid_exists(pid):
|
| 391 |
os.kill(pid, signal.SIGUSR2) # Signal to resume
|
| 392 |
-
self.save_status(state='
|
| 393 |
self.append_log("Training resumed")
|
| 394 |
|
| 395 |
return "Training resumed", self.get_logs()
|
|
@@ -437,6 +489,13 @@ class TrainingService:
|
|
| 437 |
'timestamp': datetime.now().isoformat(),
|
| 438 |
**kwargs
|
| 439 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
with open(self.status_file, 'w') as f:
|
| 441 |
json.dump(status, f, indent=2)
|
| 442 |
|
|
|
|
| 23 |
from utils import make_archive, parse_training_log, is_image_file, is_video_file
|
| 24 |
from finetrainers_utils import prepare_finetrainers_dataset, copy_files_to_training_dir
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
logger = logging.getLogger(__name__)
|
| 27 |
|
| 28 |
class TrainingService:
|
|
|
|
| 32 |
self.status_file = OUTPUT_PATH / "status.json"
|
| 33 |
self.pid_file = OUTPUT_PATH / "training.pid"
|
| 34 |
self.log_file = OUTPUT_PATH / "training.log"
|
| 35 |
+
|
| 36 |
+
self.file_handler = None
|
| 37 |
+
self.setup_logging()
|
| 38 |
+
|
| 39 |
logger.info("Training service initialized")
|
| 40 |
|
| 41 |
+
def setup_logging(self):
|
| 42 |
+
"""Set up logging with proper handler management"""
|
| 43 |
+
global logger
|
| 44 |
+
logger = logging.getLogger(__name__)
|
| 45 |
+
logger.setLevel(logging.INFO)
|
| 46 |
+
|
| 47 |
+
# Remove any existing handlers to avoid duplicates
|
| 48 |
+
logger.handlers.clear()
|
| 49 |
+
|
| 50 |
+
# Add stdout handler
|
| 51 |
+
stdout_handler = logging.StreamHandler(sys.stdout)
|
| 52 |
+
stdout_handler.setFormatter(logging.Formatter(
|
| 53 |
+
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 54 |
+
))
|
| 55 |
+
logger.addHandler(stdout_handler)
|
| 56 |
+
|
| 57 |
+
# Add file handler if log file is accessible
|
| 58 |
+
try:
|
| 59 |
+
# Close existing file handler if it exists
|
| 60 |
+
if self.file_handler:
|
| 61 |
+
self.file_handler.close()
|
| 62 |
+
logger.removeHandler(self.file_handler)
|
| 63 |
+
|
| 64 |
+
self.file_handler = logging.FileHandler(str(LOG_FILE_PATH))
|
| 65 |
+
self.file_handler.setFormatter(logging.Formatter(
|
| 66 |
+
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 67 |
+
))
|
| 68 |
+
logger.addHandler(self.file_handler)
|
| 69 |
+
except Exception as e:
|
| 70 |
+
logger.warning(f"Could not set up log file: {e}")
|
| 71 |
+
|
| 72 |
+
def clear_logs(self) -> None:
|
| 73 |
+
"""Clear log file with proper handler cleanup"""
|
| 74 |
+
try:
|
| 75 |
+
# Remove and close the file handler
|
| 76 |
+
if self.file_handler:
|
| 77 |
+
logger.removeHandler(self.file_handler)
|
| 78 |
+
self.file_handler.close()
|
| 79 |
+
self.file_handler = None
|
| 80 |
+
|
| 81 |
+
# Delete the file if it exists
|
| 82 |
+
if LOG_FILE_PATH.exists():
|
| 83 |
+
LOG_FILE_PATH.unlink()
|
| 84 |
+
|
| 85 |
+
# Recreate logging setup
|
| 86 |
+
self.setup_logging()
|
| 87 |
+
self.append_log("Log file cleared and recreated")
|
| 88 |
+
|
| 89 |
+
except Exception as e:
|
| 90 |
+
logger.error(f"Error clearing logs: {e}")
|
| 91 |
+
raise
|
| 92 |
+
|
| 93 |
+
def __del__(self):
|
| 94 |
+
"""Cleanup when the service is destroyed"""
|
| 95 |
+
if self.file_handler:
|
| 96 |
+
self.file_handler.close()
|
| 97 |
+
|
| 98 |
def save_session(self, params: Dict) -> None:
|
| 99 |
"""Save training session parameters"""
|
| 100 |
session_data = {
|
|
|
|
| 125 |
try:
|
| 126 |
with open(self.status_file, 'r') as f:
|
| 127 |
status = json.load(f)
|
| 128 |
+
#print("status found in the json:", status)
|
| 129 |
|
| 130 |
# Check if process is actually running
|
| 131 |
if self.pid_file.exists():
|
|
|
|
| 133 |
pid = int(f.read().strip())
|
| 134 |
if not psutil.pid_exists(pid):
|
| 135 |
# Process died unexpectedly
|
| 136 |
+
if status['status'] == 'training':
|
| 137 |
status['status'] = 'error'
|
| 138 |
status['message'] = 'Training process terminated unexpectedly'
|
| 139 |
self.append_log("Training process terminated unexpectedly")
|
|
|
|
| 354 |
# Update initial training status
|
| 355 |
total_steps = num_epochs * (max(1, video_count) // batch_size)
|
| 356 |
self.save_status(
|
| 357 |
+
state='training',
|
| 358 |
epoch=0,
|
| 359 |
step=0,
|
| 360 |
total_steps=total_steps,
|
|
|
|
| 441 |
|
| 442 |
if psutil.pid_exists(pid):
|
| 443 |
os.kill(pid, signal.SIGUSR2) # Signal to resume
|
| 444 |
+
self.save_status(state='training', message='Training resumed')
|
| 445 |
self.append_log("Training resumed")
|
| 446 |
|
| 447 |
return "Training resumed", self.get_logs()
|
|
|
|
| 489 |
'timestamp': datetime.now().isoformat(),
|
| 490 |
**kwargs
|
| 491 |
}
|
| 492 |
+
if state === "Training started" or state == "initializing":
|
| 493 |
+
gr.Info("Initializing model and dataset..")
|
| 494 |
+
elif state == "training":
|
| 495 |
+
gr.Info("Training started!")
|
| 496 |
+
elif state == "completed":
|
| 497 |
+
gr.Info("Training completed!")
|
| 498 |
+
|
| 499 |
with open(self.status_file, 'w') as f:
|
| 500 |
json.dump(status, f, indent=2)
|
| 501 |
|