Initial commit
Browse files- README.md +17 -0
- app.py +319 -0
- models/lid.176.bin +3 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -12,3 +12,20 @@ short_description: compare language detection models
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Language Detection Comparison App
|
| 19 |
+
|
| 20 |
+
This app compares language detection results from three sources:
|
| 21 |
+
|
| 22 |
+
- **Facebook fastText** (offline, accurate)
|
| 23 |
+
- **Google Cloud Translation API** (online, requires API key)
|
| 24 |
+
- **Hugging Face language detection model** (configurable)
|
| 25 |
+
|
| 26 |
+
## Setup
|
| 27 |
+
|
| 28 |
+
1. Install dependencies:
|
| 29 |
+
|
| 30 |
+
```bash
|
| 31 |
+
pip install -r requirements.txt
|
app.py
ADDED
|
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import fasttext
|
| 5 |
+
from google.cloud import translate_v2 as translate
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
import subprocess
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
|
| 12 |
+
MODEL_PATH = os.path.join(BASE_DIR, "models", "lid.176.bin")
|
| 13 |
+
fasttext_model = fasttext.load_model(MODEL_PATH)
|
| 14 |
+
|
| 15 |
+
# model = fasttext.load_model("models\lid.176.bin")
|
| 16 |
+
# print(model.predict("Hello world"))
|
| 17 |
+
|
| 18 |
+
# --- Setup FastText model (download if missing) ---
|
| 19 |
+
# MODEL_PATH = "C:/_Prep/_code/Python/language-detection-compare-models/models/lid.176.bin"
|
| 20 |
+
# os.makedirs("models", exist_ok=True)
|
| 21 |
+
# if not os.path.exists(MODEL_PATH):
|
| 22 |
+
# os.system(
|
| 23 |
+
# f"wget -O {MODEL_PATH} https://dl.fbaipublicfiles.com/fasttext/supervised-models/lid.176.bin"
|
| 24 |
+
# )
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
fasttext_model = fasttext.load_model(MODEL_PATH)
|
| 28 |
+
except ValueError:
|
| 29 |
+
raise RuntimeError("FastText model file could not be loaded.")
|
| 30 |
+
|
| 31 |
+
# --- Setup Google Translate Client ---
|
| 32 |
+
# google_creds = os.getenv("GOOGLE_APPLICATION_CREDENTIALS")
|
| 33 |
+
# if google_creds:
|
| 34 |
+
# with open("google_creds.json", "w") as f:
|
| 35 |
+
# f.write(google_creds)
|
| 36 |
+
# os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "google_creds.json"
|
| 37 |
+
# translate_client = translate.Client()
|
| 38 |
+
# else:
|
| 39 |
+
# translate_client = None
|
| 40 |
+
|
| 41 |
+
#print("Current working directory:", os.getcwd())
|
| 42 |
+
#load_dotenv(dotenv_path=r"C:\_Prep\_code\Python\language-detection-compare-models\.env") # If needed
|
| 43 |
+
#C:\_Prep\_code\Python\language-detection-compare-models\.env
|
| 44 |
+
|
| 45 |
+
google_creds_path = os.getenv("GOOGLE_APPLICATION_CREDENTIAL")
|
| 46 |
+
#print("Resolved GOOGLE_APPLICATION_CREDENTIALS:", google_creds_path)
|
| 47 |
+
|
| 48 |
+
# load_dotenv()
|
| 49 |
+
|
| 50 |
+
# google_creds_path = os.getenv("GOOGLE_APPLICATION_CREDENTIALS")
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
#google_creds_path = os.getenv("GOOGLE_APPLICATION_CREDENTIALS")
|
| 54 |
+
if google_creds_path and os.path.isfile(google_creds_path):
|
| 55 |
+
os.environ["GOOGLE_APPLICATION_CREDENTIAL"] = google_creds_path # redundant but explicit
|
| 56 |
+
from google.cloud import translate_v2 as translate
|
| 57 |
+
translate_client = translate.Client()
|
| 58 |
+
else:
|
| 59 |
+
translate_client = None
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# --- Setup Hugging Face pipeline ---
|
| 63 |
+
HF_MODEL_NAME = "papluca/xlm-roberta-base-language-detection"
|
| 64 |
+
hf_lang_detector = pipeline("text-classification", model=HF_MODEL_NAME)
|
| 65 |
+
|
| 66 |
+
# --- Mapping ISO 639-1 language codes to countries with flag emojis ---
|
| 67 |
+
# Source: filtered and truncated for top 5 countries (edit as needed)
|
| 68 |
+
LANGUAGE_TO_COUNTRIES = {
|
| 69 |
+
"en": ["US", "GB", "CA", "AU", "IN"],
|
| 70 |
+
"fr": ["FR", "BE", "CA", "CH", "LU"],
|
| 71 |
+
"es": ["ES", "MX", "CO", "AR", "PE"],
|
| 72 |
+
"de": ["DE", "AT", "CH", "LU", "BE"],
|
| 73 |
+
"ar": ["EG", "SA", "IQ", "DZ", "MA"],
|
| 74 |
+
"hi": ["IN", "FJ", "MU", "NP", "SG"],
|
| 75 |
+
"zh": ["CN", "SG", "MY", "TW", "HK"],
|
| 76 |
+
"ru": ["RU", "BY", "KZ", "UA", "KG"],
|
| 77 |
+
"pt": ["PT", "BR", "AO", "MZ", "GW"],
|
| 78 |
+
"ja": ["JP"],
|
| 79 |
+
"ko": ["KR"],
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
def flag_emoji(country_code):
|
| 83 |
+
return "".join(chr(0x1F1E6 + ord(c) - ord('A')) for c in country_code)
|
| 84 |
+
|
| 85 |
+
def render_result(model_name, lang_code, score):
|
| 86 |
+
flags = LANGUAGE_TO_COUNTRIES.get(lang_code, [])
|
| 87 |
+
if flags:
|
| 88 |
+
flag_str = " ".join(flag_emoji(c) for c in flags[:5])
|
| 89 |
+
etc = "<br>...etc" if len(flags) > 5 else ""
|
| 90 |
+
else:
|
| 91 |
+
flag_str = "🌐"
|
| 92 |
+
etc = ""
|
| 93 |
+
return f"<b>{model_name}:</b> <code>{lang_code}</code> ({score})<br>{flag_str}{etc}"
|
| 94 |
+
|
| 95 |
+
# def detect_languages(text, hf_model_path=None):
|
| 96 |
+
# # FastText
|
| 97 |
+
# try:
|
| 98 |
+
# ft_label, ft_score = fasttext_model.predict(text, k=1)
|
| 99 |
+
# ft_lang = ft_label[0].replace("__label__", "")
|
| 100 |
+
# ft_score = round(ft_score[0], 3)
|
| 101 |
+
# except Exception:
|
| 102 |
+
# ft_lang, ft_score = "Error", 0
|
| 103 |
+
|
| 104 |
+
# # Google Translate
|
| 105 |
+
# if translate_client:
|
| 106 |
+
# try:
|
| 107 |
+
# result = translate_client.detect_language(text)
|
| 108 |
+
# google_lang = result.get("language", "N/A")
|
| 109 |
+
# google_conf = round(result.get("confidence", 0), 3)
|
| 110 |
+
# except Exception:
|
| 111 |
+
# google_lang, google_conf = "Error", 0
|
| 112 |
+
# else:
|
| 113 |
+
# google_lang, google_conf = "NotConfigured", 0
|
| 114 |
+
|
| 115 |
+
# # Hugging Face
|
| 116 |
+
# try:
|
| 117 |
+
# model = (
|
| 118 |
+
# pipeline("text-classification", model=hf_model_path)
|
| 119 |
+
# if hf_model_path and hf_model_path.strip()
|
| 120 |
+
# else hf_lang_detector
|
| 121 |
+
# )
|
| 122 |
+
# hf_results = model(text)
|
| 123 |
+
# hf_lang = hf_results[0]["label"].lower()
|
| 124 |
+
# hf_score = round(hf_results[0]["score"], 3)
|
| 125 |
+
# except Exception:
|
| 126 |
+
# hf_lang, hf_score = "Error", 0
|
| 127 |
+
|
| 128 |
+
# return (
|
| 129 |
+
# render_result("FastText", ft_lang, ft_score),
|
| 130 |
+
# render_result("Google", google_lang, google_conf),
|
| 131 |
+
# render_result("HuggingFace", hf_lang, hf_score)
|
| 132 |
+
# )
|
| 133 |
+
|
| 134 |
+
from langcodes import Language
|
| 135 |
+
|
| 136 |
+
# Maps language code to top 5 countries where it's predominantly spoken
|
| 137 |
+
LANG_COUNTRY_MAP = {
|
| 138 |
+
'af': ['ZA', 'NA'],
|
| 139 |
+
'am': ['ET'],
|
| 140 |
+
'ar': ['SA', 'EG', 'IQ', 'MA', 'DZ', 'SD', 'SY', 'YE', 'JO', 'LB', 'TN', 'AE', 'OM', 'KW', 'BH', 'QA', 'LY'],
|
| 141 |
+
'az': ['AZ'],
|
| 142 |
+
'be': ['BY'],
|
| 143 |
+
'bg': ['BG'],
|
| 144 |
+
'bn': ['BD', 'IN'],
|
| 145 |
+
'bs': ['BA'],
|
| 146 |
+
'ca': ['ES', 'AD'],
|
| 147 |
+
'ceb': ['PH'],
|
| 148 |
+
'cs': ['CZ'],
|
| 149 |
+
'cy': ['GB'],
|
| 150 |
+
'da': ['DK'],
|
| 151 |
+
'de': ['DE', 'AT', 'CH', 'LU', 'BE', 'LI'],
|
| 152 |
+
'el': ['GR', 'CY'],
|
| 153 |
+
'en': ['US', 'GB', 'CA', 'AU', 'NZ', 'IE', 'ZA', 'IN', 'PH', 'NG', 'KE', 'UG'],
|
| 154 |
+
'eo': ['PL', 'FR', 'DE', 'US'],
|
| 155 |
+
'es': ['ES', 'MX', 'CO', 'AR', 'PE', 'VE', 'CL', 'EC', 'GT', 'CU', 'BO', 'DO', 'HN', 'PY', 'SV', 'NI', 'CR', 'PA', 'UY'],
|
| 156 |
+
'et': ['EE'],
|
| 157 |
+
'eu': ['ES', 'FR'],
|
| 158 |
+
'fa': ['IR', 'AF', 'TJ'],
|
| 159 |
+
'fi': ['FI'],
|
| 160 |
+
'fil': ['PH'],
|
| 161 |
+
'fj': ['FJ'],
|
| 162 |
+
'fr': ['FR', 'BE', 'CA', 'CH', 'LU', 'CI', 'SN', 'ML', 'CM', 'HT', 'MG', 'NE', 'TG', 'GA', 'CD', 'BF', 'TD'],
|
| 163 |
+
'fy': ['NL'],
|
| 164 |
+
'ga': ['IE'],
|
| 165 |
+
'gd': ['GB'],
|
| 166 |
+
'gl': ['ES'],
|
| 167 |
+
'gu': ['IN'],
|
| 168 |
+
'ha': ['NG', 'NE', 'GH'],
|
| 169 |
+
'haw': ['US'],
|
| 170 |
+
'he': ['IL'],
|
| 171 |
+
'hi': ['IN', 'FJ', 'MU', 'NP', 'SG'],
|
| 172 |
+
'hmn': ['US'],
|
| 173 |
+
'hr': ['HR', 'BA'],
|
| 174 |
+
'ht': ['HT'],
|
| 175 |
+
'hu': ['HU'],
|
| 176 |
+
'hy': ['AM'],
|
| 177 |
+
'id': ['ID'],
|
| 178 |
+
'ig': ['NG'],
|
| 179 |
+
'is': ['IS'],
|
| 180 |
+
'it': ['IT', 'CH', 'SM'],
|
| 181 |
+
'ja': ['JP'],
|
| 182 |
+
'jv': ['ID'],
|
| 183 |
+
'ka': ['GE'],
|
| 184 |
+
'kk': ['KZ'],
|
| 185 |
+
'km': ['KH'],
|
| 186 |
+
'kn': ['IN'],
|
| 187 |
+
'ko': ['KR', 'KP'],
|
| 188 |
+
'ku': ['IQ', 'TR', 'SY', 'IR'],
|
| 189 |
+
'ky': ['KG'],
|
| 190 |
+
'la': ['VA'],
|
| 191 |
+
'lb': ['LU'],
|
| 192 |
+
'lo': ['LA'],
|
| 193 |
+
'lt': ['LT'],
|
| 194 |
+
'lv': ['LV'],
|
| 195 |
+
'mg': ['MG'],
|
| 196 |
+
'mi': ['NZ'],
|
| 197 |
+
'mk': ['MK'],
|
| 198 |
+
'ml': ['IN'],
|
| 199 |
+
'mn': ['MN'],
|
| 200 |
+
'mr': ['IN'],
|
| 201 |
+
'ms': ['MY', 'BN', 'SG'],
|
| 202 |
+
'mt': ['MT'],
|
| 203 |
+
'my': ['MM'],
|
| 204 |
+
'ne': ['NP'],
|
| 205 |
+
'nl': ['NL', 'BE', 'SR', 'AW', 'CW'],
|
| 206 |
+
'no': ['NO'],
|
| 207 |
+
'ny': ['MW', 'ZM', 'ZW'],
|
| 208 |
+
'pa': ['IN', 'PK'],
|
| 209 |
+
'pl': ['PL'],
|
| 210 |
+
'ps': ['AF'],
|
| 211 |
+
'pt': ['PT', 'BR', 'AO', 'MZ', 'GW', 'ST', 'CV'],
|
| 212 |
+
'ro': ['RO', 'MD'],
|
| 213 |
+
'ru': ['RU', 'BY', 'KZ', 'KG', 'UA'],
|
| 214 |
+
'rw': ['RW'],
|
| 215 |
+
'sd': ['PK'],
|
| 216 |
+
'si': ['LK'],
|
| 217 |
+
'sk': ['SK'],
|
| 218 |
+
'sl': ['SI'],
|
| 219 |
+
'sm': ['WS'],
|
| 220 |
+
'sn': ['ZW'],
|
| 221 |
+
'so': ['SO'],
|
| 222 |
+
'sq': ['AL', 'XK', 'MK'],
|
| 223 |
+
'sr': ['RS', 'BA', 'ME'],
|
| 224 |
+
'st': ['LS'],
|
| 225 |
+
'su': ['ID'],
|
| 226 |
+
'sv': ['SE', 'FI'],
|
| 227 |
+
'sw': ['KE', 'TZ', 'UG'],
|
| 228 |
+
'ta': ['IN', 'LK', 'SG', 'MY'],
|
| 229 |
+
'te': ['IN'],
|
| 230 |
+
'tg': ['TJ'],
|
| 231 |
+
'th': ['TH'],
|
| 232 |
+
'ti': ['ET', 'ER'],
|
| 233 |
+
'tk': ['TM'],
|
| 234 |
+
'tl': ['PH'],
|
| 235 |
+
'tr': ['TR', 'CY'],
|
| 236 |
+
'tt': ['RU'],
|
| 237 |
+
'ug': ['CN'],
|
| 238 |
+
'uk': ['UA'],
|
| 239 |
+
'ur': ['PK', 'IN'],
|
| 240 |
+
'uz': ['UZ'],
|
| 241 |
+
'vi': ['VN'],
|
| 242 |
+
'xh': ['ZA'],
|
| 243 |
+
'yi': ['US', 'IL'],
|
| 244 |
+
'yo': ['NG'],
|
| 245 |
+
'zh': ['CN', 'SG', 'MY', 'TW'],
|
| 246 |
+
'zu': ['ZA'],
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def country_flag_img(country_code):
|
| 251 |
+
#return f"<img src='https://flagcdn.com/w40/{country_code.lower()}.png' height='20' style='margin-right:4px'/><br/>"
|
| 252 |
+
return f"<img src='https://flagcdn.com/w40/{country_code.lower()}.png' title='{LANG_COUNTRY_MAP.get(country_code, country_code)}' height='20' style='margin-right:4px'/><br/>"
|
| 253 |
+
|
| 254 |
+
def format_with_flags(lang_code):
|
| 255 |
+
countries = LANG_COUNTRY_MAP.get(lang_code, [])
|
| 256 |
+
flags_html = ''.join([country_flag_img(c) for c in countries[:5]])
|
| 257 |
+
if len(countries) > 5:
|
| 258 |
+
flags_html += "<span style='margin-left:4px;'>etc...</span>"
|
| 259 |
+
return flags_html
|
| 260 |
+
|
| 261 |
+
def detect_languages(text, hf_model_path=None):
|
| 262 |
+
ft_label, ft_score = fasttext_model.predict(text, k=1)
|
| 263 |
+
ft_lang = ft_label[0].replace("__label__", "")
|
| 264 |
+
ft_score = round(ft_score[0], 3)
|
| 265 |
+
|
| 266 |
+
if translate_client:
|
| 267 |
+
try:
|
| 268 |
+
result = translate_client.detect_language(text)
|
| 269 |
+
google_lang = result.get("language", "N/A")
|
| 270 |
+
google_conf = round(result.get("confidence", 0), 3)
|
| 271 |
+
except Exception:
|
| 272 |
+
google_lang = "Error"
|
| 273 |
+
google_conf = 0
|
| 274 |
+
else:
|
| 275 |
+
google_lang = "Not Configured"
|
| 276 |
+
google_conf = 0
|
| 277 |
+
|
| 278 |
+
if hf_model_path and hf_model_path.strip() != "":
|
| 279 |
+
try:
|
| 280 |
+
custom_detector = pipeline("text-classification", model=hf_model_path)
|
| 281 |
+
hf_results = custom_detector(text)
|
| 282 |
+
except Exception:
|
| 283 |
+
hf_results = [{"label": "Error", "score": 0}]
|
| 284 |
+
else:
|
| 285 |
+
hf_results = hf_lang_detector(text)
|
| 286 |
+
|
| 287 |
+
hf_label = hf_results[0]["label"].lower()
|
| 288 |
+
hf_score = round(hf_results[0]["score"], 3)
|
| 289 |
+
|
| 290 |
+
return (
|
| 291 |
+
f"FastText: {ft_lang} ({ft_score})<br>{format_with_flags(ft_lang)}",
|
| 292 |
+
f"Google API: {google_lang} ({google_conf})<br>{format_with_flags(google_lang)}",
|
| 293 |
+
f"HuggingFace: {hf_label} ({hf_score})<br>{format_with_flags(hf_label)}"
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
with gr.Blocks() as demo:
|
| 297 |
+
gr.Markdown("## 🌍 Language Detection Comparison")
|
| 298 |
+
|
| 299 |
+
with gr.Row():
|
| 300 |
+
input_text = gr.TextArea(label="Enter text", lines=4, placeholder="Type text to detect language...")
|
| 301 |
+
|
| 302 |
+
with gr.Row():
|
| 303 |
+
hf_model_path = gr.Textbox(label="HuggingFace Model Path (optional)", value="papluca/xlm-roberta-base-language-detection", placeholder="e.g. papluca/xlm-roberta-base-language-detection")
|
| 304 |
+
|
| 305 |
+
detect_btn = gr.Button("Detect Language")
|
| 306 |
+
|
| 307 |
+
with gr.Row():
|
| 308 |
+
fasttext_out = gr.HTML(label="FastText")
|
| 309 |
+
google_out = gr.HTML(label="Google")
|
| 310 |
+
hf_out = gr.HTML(label="Hugging Face")
|
| 311 |
+
|
| 312 |
+
detect_btn.click(
|
| 313 |
+
detect_languages,
|
| 314 |
+
inputs=[input_text, hf_model_path],
|
| 315 |
+
outputs=[fasttext_out, google_out, hf_out]
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
if __name__ == "__main__":
|
| 319 |
+
demo.launch()
|
models/lid.176.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7e69ec5451bc261cc7844e49e4792a85d7f09c06789ec800fc4a44aec362764e
|
| 3 |
+
size 131266198
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
fasttext
|
| 3 |
+
google-cloud-translate
|
| 4 |
+
transformers
|
| 5 |
+
torch
|