Spaces:
Runtime error
Runtime error
| from typing import Any | |
| def get_pipeline(): | |
| import torch | |
| from diffusers import AutoencoderTiny, AutoPipelineForImage2Image | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
| pipe = AutoPipelineForImage2Image.from_pretrained( | |
| "SimianLuo/LCM_Dreamshaper_v7", | |
| use_safetensors=True, | |
| ) | |
| pipe.vae = AutoencoderTiny.from_pretrained( | |
| "madebyollin/taesd", | |
| torch_dtype=torch_dtype, | |
| use_safetensors=True, | |
| ) | |
| pipe = pipe.to(device, dtype=torch_dtype) | |
| pipe.unet.to(memory_format=torch.channels_last) | |
| return pipe | |
| def get_test_pipeline(): | |
| from PIL import Image | |
| from dataclasses import dataclass | |
| import random | |
| import time | |
| class Images: | |
| images: list[Image.Image] | |
| class Pipeline: | |
| def __call__(self, *args: Any, **kwds: Any) -> Any: | |
| r = random.randint(0, 255) | |
| g = random.randint(0, 255) | |
| b = random.randint(0, 255) | |
| return Images(images=[Image.new("RGB", (512, 512), color=(r, g, b))]) | |
| return Pipeline() | |