Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| from torch import nn | |
| from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM | |
| from pathlib import Path | |
| import torch | |
| import torch.amp.autocast_mode | |
| from PIL import Image | |
| import os | |
| import torchvision.transforms.functional as TVF | |
| CLIP_PATH = "google/siglip-so400m-patch14-384" | |
| MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B" | |
| CHECKPOINT_PATH = Path("9em124t2-499968") | |
| TITLE = "<h1><center>JoyCaption Alpha One (2024-09-20a)</center></h1>" | |
| CAPTION_TYPE_MAP = { | |
| ("descriptive", "formal", False, False): ["Write a descriptive caption for this image in a formal tone."], | |
| ("descriptive", "formal", False, True): ["Write a descriptive caption for this image in a formal tone within {word_count} words."], | |
| ("descriptive", "formal", True, False): ["Write a {length} descriptive caption for this image in a formal tone."], | |
| ("descriptive", "informal", False, False): ["Write a descriptive caption for this image in a casual tone."], | |
| ("descriptive", "informal", False, True): ["Write a descriptive caption for this image in a casual tone within {word_count} words."], | |
| ("descriptive", "informal", True, False): ["Write a {length} descriptive caption for this image in a casual tone."], | |
| ("training_prompt", "formal", False, False): ["Write a stable diffusion prompt for this image."], | |
| ("training_prompt", "formal", False, True): ["Write a stable diffusion prompt for this image within {word_count} words."], | |
| ("training_prompt", "formal", True, False): ["Write a {length} stable diffusion prompt for this image."], | |
| ("rng-tags", "formal", False, False): ["Write a list of Booru tags for this image."], | |
| ("rng-tags", "formal", False, True): ["Write a list of Booru tags for this image within {word_count} words."], | |
| ("rng-tags", "formal", True, False): ["Write a {length} list of Booru tags for this image."], | |
| } | |
| HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
| class ImageAdapter(nn.Module): | |
| def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool): | |
| super().__init__() | |
| self.deep_extract = deep_extract | |
| if self.deep_extract: | |
| input_features = input_features * 5 | |
| self.linear1 = nn.Linear(input_features, output_features) | |
| self.activation = nn.GELU() | |
| self.linear2 = nn.Linear(output_features, output_features) | |
| self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features) | |
| self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features)) | |
| # Mode token | |
| #self.mode_token = nn.Embedding(n_modes, output_features) | |
| #self.mode_token.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3 | |
| # Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>) | |
| self.other_tokens = nn.Embedding(3, output_features) | |
| self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3 | |
| def forward(self, vision_outputs: torch.Tensor): | |
| if self.deep_extract: | |
| x = torch.concat(( | |
| vision_outputs[-2], | |
| vision_outputs[3], | |
| vision_outputs[7], | |
| vision_outputs[13], | |
| vision_outputs[20], | |
| ), dim=-1) | |
| assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features | |
| assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}" | |
| else: | |
| x = vision_outputs[-2] | |
| x = self.ln1(x) | |
| if self.pos_emb is not None: | |
| assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}" | |
| x = x + self.pos_emb | |
| x = self.linear1(x) | |
| x = self.activation(x) | |
| x = self.linear2(x) | |
| # Mode token | |
| #mode_token = self.mode_token(mode) | |
| #assert mode_token.shape == (x.shape[0], mode_token.shape[1], x.shape[2]), f"Expected {(x.shape[0], 1, x.shape[2])}, got {mode_token.shape}" | |
| #x = torch.cat((x, mode_token), dim=1) | |
| # <|image_start|>, IMAGE, <|image_end|> | |
| other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1)) | |
| assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}" | |
| x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1) | |
| return x | |
| def get_eot_embedding(self): | |
| return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0) | |
| # Load CLIP | |
| print("Loading CLIP") | |
| clip_processor = AutoProcessor.from_pretrained(CLIP_PATH) | |
| clip_model = AutoModel.from_pretrained(CLIP_PATH) | |
| clip_model = clip_model.vision_model | |
| if (CHECKPOINT_PATH / "clip_model.pt").exists(): | |
| print("Loading VLM's custom vision model") | |
| checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu') | |
| checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()} | |
| clip_model.load_state_dict(checkpoint) | |
| del checkpoint | |
| clip_model.eval() | |
| clip_model.requires_grad_(False) | |
| clip_model.to("cuda") | |
| # Tokenizer | |
| print("Loading tokenizer") | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False) | |
| assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}" | |
| # LLM | |
| print("Loading LLM") | |
| if (CHECKPOINT_PATH / "text_model").exists: | |
| print("Loading VLM's custom text model") | |
| text_model = AutoModelForCausalLM.from_pretrained(CHECKPOINT_PATH / "text_model", device_map=0, torch_dtype=torch.bfloat16) | |
| else: | |
| text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16) | |
| text_model.eval() | |
| # Image Adapter | |
| print("Loading image adapter") | |
| image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False) | |
| image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")) | |
| image_adapter.eval() | |
| image_adapter.to("cuda") | |
| def stream_chat(input_image: Image.Image, caption_type: str, caption_tone: str, caption_length: str | int) -> str: | |
| torch.cuda.empty_cache() | |
| # 'any' means no length specified | |
| length = None if caption_length == "any" else caption_length | |
| if isinstance(length, str): | |
| try: | |
| length = int(length) | |
| except ValueError: | |
| pass | |
| # 'rng-tags' and 'training_prompt' don't have formal/informal tones | |
| if caption_type == "rng-tags" or caption_type == "training_prompt": | |
| caption_tone = "formal" | |
| # Build prompt | |
| prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int)) | |
| if prompt_key not in CAPTION_TYPE_MAP: | |
| raise ValueError(f"Invalid caption type: {prompt_key}") | |
| prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length) | |
| print(f"Prompt: {prompt_str}") | |
| # Preprocess image | |
| #image = clip_processor(images=input_image, return_tensors='pt').pixel_values | |
| image = input_image.resize((384, 384), Image.LANCZOS) | |
| pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0 | |
| pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) | |
| pixel_values = pixel_values.to('cuda') | |
| # Tokenize the prompt | |
| prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False) | |
| # Embed image | |
| with torch.amp.autocast_mode.autocast('cuda', enabled=True): | |
| vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True) | |
| image_features = vision_outputs.hidden_states | |
| embedded_images = image_adapter(image_features) | |
| embedded_images = embedded_images.to('cuda') | |
| # Embed prompt | |
| prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda')) | |
| assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}" | |
| embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64)) | |
| eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype) | |
| # Construct prompts | |
| inputs_embeds = torch.cat([ | |
| embedded_bos.expand(embedded_images.shape[0], -1, -1), | |
| embedded_images.to(dtype=embedded_bos.dtype), | |
| prompt_embeds.expand(embedded_images.shape[0], -1, -1), | |
| eot_embed.expand(embedded_images.shape[0], -1, -1), | |
| ], dim=1) | |
| input_ids = torch.cat([ | |
| torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long), | |
| torch.zeros((1, embedded_images.shape[1]), dtype=torch.long), | |
| prompt, | |
| torch.tensor([[tokenizer.convert_tokens_to_ids("<|eot_id|>")]], dtype=torch.long), | |
| ], dim=1).to('cuda') | |
| attention_mask = torch.ones_like(input_ids) | |
| #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None) | |
| #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None) | |
| generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, suppress_tokens=None) # Uses the default which is temp=0.6, top_p=0.9 | |
| # Trim off the prompt | |
| generate_ids = generate_ids[:, input_ids.shape[1]:] | |
| if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"): | |
| generate_ids = generate_ids[:, :-1] | |
| caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] | |
| return caption.strip() | |
| with gr.Blocks() as demo: | |
| gr.HTML(TITLE) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(type="pil", label="Input Image") | |
| caption_type = gr.Dropdown( | |
| choices=["descriptive", "training_prompt", "rng-tags"], | |
| label="Caption Type", | |
| value="descriptive", | |
| ) | |
| caption_tone = gr.Dropdown( | |
| choices=["formal", "informal"], | |
| label="Caption Tone", | |
| value="formal", | |
| ) | |
| caption_length = gr.Dropdown( | |
| choices=["any", "very short", "short", "medium-length", "long", "very long"] + | |
| [str(i) for i in range(20, 261, 10)], | |
| label="Caption Length", | |
| value="any", | |
| ) | |
| gr.Markdown("**Note:** Caption tone doesn't affect `rng-tags` and `training_prompt`.") | |
| run_button = gr.Button("Caption") | |
| with gr.Column(): | |
| output_caption = gr.Textbox(label="Caption") | |
| run_button.click(fn=stream_chat, inputs=[input_image, caption_type, caption_tone, caption_length], outputs=[output_caption]) | |
| if __name__ == "__main__": | |
| demo.launch() |