Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| from diffusers import AutoencoderOobleck | |
| import torch | |
| from transformers import T5EncoderModel,T5TokenizerFast | |
| from diffusers import FluxTransformer2DModel | |
| from torch import nn | |
| from typing import List | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from diffusers.training_utils import compute_density_for_timestep_sampling | |
| import copy | |
| import torch.nn.functional as F | |
| import numpy as np | |
| from model import TangoFlux | |
| from huggingface_hub import snapshot_download | |
| from tqdm import tqdm | |
| from typing import Optional,Union,List | |
| from datasets import load_dataset, Audio | |
| from math import pi | |
| import json | |
| import inspect | |
| import yaml | |
| from safetensors.torch import load_file | |
| class TangoFluxInference: | |
| def __init__(self,name='declare-lab/TangoFlux',device="cuda"): | |
| self.vae = AutoencoderOobleck.from_pretrained("stabilityai/stable-audio-open-1.0",subfolder='vae') | |
| paths = snapshot_download(repo_id=name) | |
| weights = load_file("{}/tangoflux.safetensors".format(paths)) | |
| with open('{}/config.json'.format(paths),'r') as f: | |
| config = json.load(f) | |
| self.model = TangoFlux(config) | |
| self.model.load_state_dict(weights,strict=False) | |
| # _IncompatibleKeys(missing_keys=['text_encoder.encoder.embed_tokens.weight'], unexpected_keys=[]) this behaviour is expected | |
| self.vae.to(device) | |
| self.model.to(device) | |
| def generate(self,prompt,steps=25,duration=10,guidance_scale=4.5): | |
| with torch.no_grad(): | |
| latents = self.model.inference_flow(prompt, | |
| duration=duration, | |
| num_inference_steps=steps, | |
| guidance_scale=guidance_scale) | |
| wave = self.vae.decode(latents.transpose(2,1)).sample.cpu()[0] | |
| return wave | |
