Spaces:
Build error
Build error
Commit
Β·
85f4388
1
Parent(s):
27a3b12
Upload full backend project
Browse files- app.py +408 -0
- requirements.txt +0 -0
app.py
ADDED
|
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify, render_template, url_for
|
| 2 |
+
from flask_cors import CORS
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from torchvision import models, transforms
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
import os
|
| 9 |
+
from mtcnn import MTCNN
|
| 10 |
+
import cv2
|
| 11 |
+
from flask_bcrypt import generate_password_hash, check_password_hash
|
| 12 |
+
from pymongo import MongoClient
|
| 13 |
+
import numpy as np
|
| 14 |
+
from werkzeug.security import generate_password_hash, check_password_hash
|
| 15 |
+
from werkzeug.utils import secure_filename
|
| 16 |
+
import logging
|
| 17 |
+
import matplotlib.pyplot as plt
|
| 18 |
+
import seaborn as sns
|
| 19 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification # New imports
|
| 20 |
+
|
| 21 |
+
# Setup logging
|
| 22 |
+
logging.basicConfig(level=logging.INFO)
|
| 23 |
+
|
| 24 |
+
app = Flask(__name__, template_folder="templates", static_folder="static")
|
| 25 |
+
CORS(app)
|
| 26 |
+
|
| 27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
+
UPLOAD_FOLDER = "static/uploads"
|
| 29 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 30 |
+
|
| 31 |
+
# ------------------- Model Loading Functions -------------------
|
| 32 |
+
|
| 33 |
+
def load_model_from_hf(repo_id, filename, num_classes):
|
| 34 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
| 35 |
+
model = models.convnext_tiny(weights=None)
|
| 36 |
+
in_features = model.classifier[2].in_features
|
| 37 |
+
model.classifier[2] = nn.Linear(in_features, num_classes)
|
| 38 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 39 |
+
model.to(device)
|
| 40 |
+
model.eval()
|
| 41 |
+
return model
|
| 42 |
+
|
| 43 |
+
# Load the existing deepfake/cheapfake models
|
| 44 |
+
deepfake_model = load_model_from_hf("faryalnimra/DFDC-detection-model", "DFDC.pth", 2)
|
| 45 |
+
cheapfake_model = load_model_from_hf("faryalnimra/ORIG-TAMP", "ORIG-TAMP.pth", 1)
|
| 46 |
+
|
| 47 |
+
# ------------------- New Real/Fake Detector Model -------------------
|
| 48 |
+
# This model determines if the uploaded image is real (label 1) or fake (label 0)
|
| 49 |
+
model_name = "prithivMLmods/Deep-Fake-Detector-Model"
|
| 50 |
+
processor = AutoImageProcessor.from_pretrained(model_name, use_fast=False)
|
| 51 |
+
realfake_detector = AutoModelForImageClassification.from_pretrained(model_name)
|
| 52 |
+
realfake_detector.to(device)
|
| 53 |
+
realfake_detector.eval()
|
| 54 |
+
|
| 55 |
+
# ------------------- Image Preprocessing -------------------
|
| 56 |
+
|
| 57 |
+
transform = transforms.Compose([
|
| 58 |
+
transforms.ToTensor(),
|
| 59 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 60 |
+
])
|
| 61 |
+
|
| 62 |
+
# ------------------- Face Detector -------------------
|
| 63 |
+
|
| 64 |
+
face_detector = MTCNN()
|
| 65 |
+
|
| 66 |
+
def detect_face(image_path):
|
| 67 |
+
image = cv2.imread(image_path)
|
| 68 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 69 |
+
faces = face_detector.detect_faces(image_rgb)
|
| 70 |
+
face_count = sum(1 for face in faces if face.get("confidence", 0) > 0.90 and face.get("box", [0, 0, 0, 0])[2] > 30)
|
| 71 |
+
return face_count
|
| 72 |
+
|
| 73 |
+
# ------------------- API Endpoint: /predict -------------------
|
| 74 |
+
@app.route("/predict", methods=["POST"])
|
| 75 |
+
def predict():
|
| 76 |
+
if "file" not in request.files:
|
| 77 |
+
return jsonify({"error": "No file uploaded"}), 400
|
| 78 |
+
|
| 79 |
+
file = request.files["file"]
|
| 80 |
+
prediction_type = request.form.get("prediction_type", "real_vs_fake") # default
|
| 81 |
+
|
| 82 |
+
filename = os.path.join(UPLOAD_FOLDER, file.filename)
|
| 83 |
+
file.save(filename)
|
| 84 |
+
|
| 85 |
+
try:
|
| 86 |
+
image = Image.open(filename).convert("RGB")
|
| 87 |
+
image_tensor = transform(image).unsqueeze(0).to(device)
|
| 88 |
+
except Exception as e:
|
| 89 |
+
return jsonify({"error": "Error processing image", "details": str(e)}), 500
|
| 90 |
+
|
| 91 |
+
# --------- CASE 1: ONLY Real/Fake Prediction ----------
|
| 92 |
+
if prediction_type == "real_vs_fake":
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 95 |
+
outputs_realfake = realfake_detector(**inputs)
|
| 96 |
+
pred_label = torch.argmax(outputs_realfake.logits, dim=1).item()
|
| 97 |
+
|
| 98 |
+
if pred_label == 1:
|
| 99 |
+
return jsonify({
|
| 100 |
+
"prediction": "Real",
|
| 101 |
+
"message": "Image is authentic. No further processing.",
|
| 102 |
+
"image_url": url_for("static", filename=f"uploads/{file.filename}")
|
| 103 |
+
})
|
| 104 |
+
else:
|
| 105 |
+
return jsonify({
|
| 106 |
+
"prediction": "Fake",
|
| 107 |
+
"message": "Image is fake, but type (Deepfake/Cheapfake) not determined in this mode.",
|
| 108 |
+
"image_url": url_for("static", filename=f"uploads/{file.filename}")
|
| 109 |
+
})
|
| 110 |
+
|
| 111 |
+
# --------- CASE 2: Deepfake vs Cheapfake Analysis ----------
|
| 112 |
+
elif prediction_type == "deepfake_vs_cheapfake":
|
| 113 |
+
with torch.no_grad():
|
| 114 |
+
deepfake_probs = torch.softmax(deepfake_model(image_tensor), dim=1)[0]
|
| 115 |
+
deepfake_confidence_before = deepfake_probs[1].item() * 100
|
| 116 |
+
cheapfake_confidence_before = torch.sigmoid(cheapfake_model(image_tensor)).item() * 100
|
| 117 |
+
|
| 118 |
+
face_count = detect_face(filename)
|
| 119 |
+
face_factor = min(face_count / 2, 1)
|
| 120 |
+
|
| 121 |
+
if deepfake_confidence_before <= cheapfake_confidence_before:
|
| 122 |
+
adjusted_deepfake_confidence = deepfake_confidence_before * (1 + 0.3 * face_factor)
|
| 123 |
+
adjusted_cheapfake_confidence = cheapfake_confidence_before * (1 - 0.3 * face_factor)
|
| 124 |
+
else:
|
| 125 |
+
adjusted_deepfake_confidence = deepfake_confidence_before
|
| 126 |
+
adjusted_cheapfake_confidence = cheapfake_confidence_before
|
| 127 |
+
|
| 128 |
+
fake_type = "Deepfake" if adjusted_deepfake_confidence > adjusted_cheapfake_confidence else "Cheapfake"
|
| 129 |
+
|
| 130 |
+
return jsonify({
|
| 131 |
+
"prediction": "Fake",
|
| 132 |
+
"fake_type": fake_type,
|
| 133 |
+
"deepfake_confidence_before": f"{deepfake_confidence_before:.2f}%",
|
| 134 |
+
"deepfake_confidence_adjusted": f"{adjusted_deepfake_confidence:.2f}%",
|
| 135 |
+
"cheapfake_confidence_before": f"{cheapfake_confidence_before:.2f}%",
|
| 136 |
+
"cheapfake_confidence_adjusted": f"{adjusted_cheapfake_confidence:.2f}%",
|
| 137 |
+
"faces_detected": face_count,
|
| 138 |
+
"image_url": url_for("static", filename=f"uploads/{file.filename}")
|
| 139 |
+
})
|
| 140 |
+
|
| 141 |
+
# --------- CASE 3: Invalid prediction_type ---------
|
| 142 |
+
else:
|
| 143 |
+
return jsonify({"error": "Invalid prediction_type. Use 'real_vs_fake' or 'deepfake_vs_cheapfake'"}), 400
|
| 144 |
+
|
| 145 |
+
# ------------------- Heatmap Generator and API -------------------
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# Flask setup
|
| 150 |
+
|
| 151 |
+
UPLOAD_FOLDER = "static/uploads"
|
| 152 |
+
HEATMAP_FOLDER = "static/heatmaps"
|
| 153 |
+
ALLOWED_EXTENSIONS = {"png", "jpg", "jpeg"}
|
| 154 |
+
|
| 155 |
+
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
| 156 |
+
os.makedirs(HEATMAP_FOLDER, exist_ok=True)
|
| 157 |
+
|
| 158 |
+
def allowed_file(filename):
|
| 159 |
+
return "." in filename and filename.rsplit(".", 1)[1].lower() in ALLOWED_EXTENSIONS
|
| 160 |
+
|
| 161 |
+
# Load your model
|
| 162 |
+
deepfake_model = load_model_from_hf("faryalnimra/DFDC-detection-model", "DFDC.pth", 2)
|
| 163 |
+
deepfake_model.eval()
|
| 164 |
+
|
| 165 |
+
# Choose the last Conv2D layer
|
| 166 |
+
target_layer = None
|
| 167 |
+
for name, module in deepfake_model.named_modules():
|
| 168 |
+
if isinstance(module, torch.nn.Conv2d):
|
| 169 |
+
target_layer = module
|
| 170 |
+
|
| 171 |
+
# Grad-CAM class
|
| 172 |
+
class GradCAM:
|
| 173 |
+
def __init__(self, model, target_layer):
|
| 174 |
+
self.model = model
|
| 175 |
+
self.target_layer = target_layer
|
| 176 |
+
self.gradients = None
|
| 177 |
+
self.activations = None
|
| 178 |
+
self._register_hooks()
|
| 179 |
+
|
| 180 |
+
def _register_hooks(self):
|
| 181 |
+
def forward_hook(module, input, output):
|
| 182 |
+
self.activations = output.detach()
|
| 183 |
+
|
| 184 |
+
def backward_hook(module, grad_in, grad_out):
|
| 185 |
+
self.gradients = grad_out[0].detach()
|
| 186 |
+
|
| 187 |
+
self.target_layer.register_forward_hook(forward_hook)
|
| 188 |
+
self.target_layer.register_backward_hook(backward_hook)
|
| 189 |
+
|
| 190 |
+
def generate(self, input_tensor, class_idx=None):
|
| 191 |
+
self.model.eval()
|
| 192 |
+
output = self.model(input_tensor)
|
| 193 |
+
|
| 194 |
+
if class_idx is None:
|
| 195 |
+
class_idx = torch.argmax(output, dim=1).item()
|
| 196 |
+
|
| 197 |
+
self.model.zero_grad()
|
| 198 |
+
loss = output[0, class_idx]
|
| 199 |
+
loss.backward()
|
| 200 |
+
|
| 201 |
+
gradients = self.gradients.cpu().numpy()[0]
|
| 202 |
+
activations = self.activations.cpu().numpy()[0]
|
| 203 |
+
|
| 204 |
+
weights = np.mean(gradients, axis=(1, 2))
|
| 205 |
+
cam = np.zeros(activations.shape[1:], dtype=np.float32)
|
| 206 |
+
|
| 207 |
+
for i, w in enumerate(weights):
|
| 208 |
+
cam += w * activations[i, :, :]
|
| 209 |
+
|
| 210 |
+
cam = np.maximum(cam, 0)
|
| 211 |
+
cam = cv2.resize(cam, (input_tensor.size(3), input_tensor.size(2)))
|
| 212 |
+
cam = cam - np.min(cam)
|
| 213 |
+
cam = cam / np.max(cam)
|
| 214 |
+
return cam, output
|
| 215 |
+
|
| 216 |
+
# Preprocessing
|
| 217 |
+
preprocess = transforms.Compose([
|
| 218 |
+
transforms.Resize((224, 224)),
|
| 219 |
+
transforms.ToTensor(),
|
| 220 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 221 |
+
])
|
| 222 |
+
|
| 223 |
+
gradcam = GradCAM(deepfake_model, target_layer)
|
| 224 |
+
|
| 225 |
+
# Generate heatmap and prediction
|
| 226 |
+
def generate_heatmap(original_image_path, heatmap_save_path):
|
| 227 |
+
img = Image.open(original_image_path).convert("RGB")
|
| 228 |
+
input_tensor = preprocess(img).unsqueeze(0)
|
| 229 |
+
|
| 230 |
+
cam, output = gradcam.generate(input_tensor)
|
| 231 |
+
|
| 232 |
+
# Get prediction
|
| 233 |
+
probabilities = torch.nn.functional.softmax(output, dim=1)[0]
|
| 234 |
+
class_idx = torch.argmax(probabilities).item()
|
| 235 |
+
confidence = probabilities[class_idx].item()
|
| 236 |
+
label = "Fake" if class_idx == 1 else "Real"
|
| 237 |
+
|
| 238 |
+
# Generate heatmap
|
| 239 |
+
heatmap = cv2.applyColorMap(np.uint8(255 * cam), cv2.COLORMAP_JET)
|
| 240 |
+
heatmap = cv2.GaussianBlur(heatmap, (7, 7), 0)
|
| 241 |
+
heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)
|
| 242 |
+
|
| 243 |
+
img_np = np.array(img.resize((224, 224)))
|
| 244 |
+
|
| 245 |
+
superimposed_img = heatmap * 0.5 + img_np * 0.5
|
| 246 |
+
superimposed_img = np.uint8(superimposed_img)
|
| 247 |
+
|
| 248 |
+
Image.fromarray(superimposed_img).save(heatmap_save_path)
|
| 249 |
+
|
| 250 |
+
return label, confidence
|
| 251 |
+
|
| 252 |
+
# Flask route
|
| 253 |
+
@app.route("/generate_heatmap", methods=["POST"])
|
| 254 |
+
def generate_heatmap_api():
|
| 255 |
+
if "file" not in request.files:
|
| 256 |
+
return jsonify({"error": "No file uploaded"}), 400
|
| 257 |
+
|
| 258 |
+
file = request.files["file"]
|
| 259 |
+
|
| 260 |
+
if file.filename == "" or not allowed_file(file.filename):
|
| 261 |
+
return jsonify({"error": "Invalid file type. Allowed types are .png, .jpg, .jpeg"}), 400
|
| 262 |
+
|
| 263 |
+
filename = secure_filename(file.filename)
|
| 264 |
+
original_image_path = os.path.join(UPLOAD_FOLDER, filename)
|
| 265 |
+
|
| 266 |
+
try:
|
| 267 |
+
file.save(original_image_path)
|
| 268 |
+
except Exception as e:
|
| 269 |
+
return jsonify({"error": "Failed to save the file"}), 500
|
| 270 |
+
|
| 271 |
+
heatmap_filename = f"heatmap_{filename}"
|
| 272 |
+
heatmap_path = os.path.join(HEATMAP_FOLDER, heatmap_filename)
|
| 273 |
+
|
| 274 |
+
label, confidence = generate_heatmap(original_image_path, heatmap_path)
|
| 275 |
+
|
| 276 |
+
return jsonify({
|
| 277 |
+
"original_image_url": url_for("static", filename=f"uploads/{filename}", _external=True),
|
| 278 |
+
"heatmap_image_url": url_for("static", filename=f"heatmaps/{heatmap_filename}", _external=True),
|
| 279 |
+
"prediction": label,
|
| 280 |
+
"confidence": f"{confidence:.2f}"
|
| 281 |
+
})
|
| 282 |
+
|
| 283 |
+
# To run:
|
| 284 |
+
# if __name__ == "__main__":
|
| 285 |
+
# app.run(debug=True)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
#MongoDB Atlantis from flask import Flask, request, jsonify
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
# MongoDB connection
|
| 297 |
+
client = MongoClient('mongodb+srv://fakecatcherai:sX_W9!SUigNS.ww@cluster0.pwyazjb.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0')
|
| 298 |
+
db = client['fakecatcherDB']
|
| 299 |
+
users_collection = db['users']
|
| 300 |
+
contacts_collection = db['contacts']
|
| 301 |
+
|
| 302 |
+
def is_valid_password(password):
|
| 303 |
+
if (len(password) < 8 or
|
| 304 |
+
not re.search(r'[A-Z]', password) or
|
| 305 |
+
not re.search(r'[a-z]', password) or
|
| 306 |
+
not re.search(r'[0-9]', password) or
|
| 307 |
+
not re.search(r'[!@#$%^&*(),.?":{}|<>]', password)):
|
| 308 |
+
return False
|
| 309 |
+
return True
|
| 310 |
+
|
| 311 |
+
@app.route('/Register', methods=['POST'])
|
| 312 |
+
def register():
|
| 313 |
+
data = request.get_json()
|
| 314 |
+
first_name = data.get('firstName')
|
| 315 |
+
last_name = data.get('lastName')
|
| 316 |
+
email = data.get('email')
|
| 317 |
+
password = data.get('password')
|
| 318 |
+
|
| 319 |
+
if users_collection.find_one({'email': email}):
|
| 320 |
+
logging.warning(f"Attempted register with existing email: {email}")
|
| 321 |
+
return jsonify({'message': 'Email already exists!'}), 400
|
| 322 |
+
|
| 323 |
+
# β
Password constraints check
|
| 324 |
+
if not is_valid_password(password):
|
| 325 |
+
return jsonify({'message': 'Password must be at least 8 characters long and include uppercase, lowercase, number, and special character.'}), 400
|
| 326 |
+
|
| 327 |
+
hashed_pw = generate_password_hash(password)
|
| 328 |
+
users_collection.insert_one({
|
| 329 |
+
'first_name': first_name,
|
| 330 |
+
'last_name': last_name,
|
| 331 |
+
'email': email,
|
| 332 |
+
'password': hashed_pw
|
| 333 |
+
})
|
| 334 |
+
|
| 335 |
+
logging.info(f"New user registered: {first_name} {last_name}, Email: {email}")
|
| 336 |
+
return jsonify({'message': 'Registration successful!'}), 201
|
| 337 |
+
|
| 338 |
+
# π΅ Login Route
|
| 339 |
+
@app.route('/Login', methods=['POST'])
|
| 340 |
+
def login():
|
| 341 |
+
data = request.get_json()
|
| 342 |
+
email = data.get('email')
|
| 343 |
+
password = data.get('password')
|
| 344 |
+
|
| 345 |
+
# Check if the user exists
|
| 346 |
+
user = users_collection.find_one({'email': email})
|
| 347 |
+
if not user or not check_password_hash(user['password'], password):
|
| 348 |
+
logging.warning(f"Failed login attempt for email: {email}")
|
| 349 |
+
return jsonify({'message': 'Invalid email or password!'}), 401
|
| 350 |
+
|
| 351 |
+
logging.info(f"User logged in successfully: {email}")
|
| 352 |
+
return jsonify({'message': 'Login successful!'}), 200
|
| 353 |
+
@app.route('/ForgotPassword', methods=['POST'])
|
| 354 |
+
def forgot_password():
|
| 355 |
+
data = request.get_json()
|
| 356 |
+
email = data.get('email')
|
| 357 |
+
new_password = data.get('newPassword')
|
| 358 |
+
confirm_password = data.get('confirmPassword')
|
| 359 |
+
|
| 360 |
+
# Check if passwords match
|
| 361 |
+
if new_password != confirm_password:
|
| 362 |
+
logging.warning(f"Password reset failed. Passwords do not match for email: {email}")
|
| 363 |
+
return jsonify({'message': 'Passwords do not match!'}), 400
|
| 364 |
+
|
| 365 |
+
# Check if the user exists
|
| 366 |
+
user = users_collection.find_one({'email': email})
|
| 367 |
+
if not user:
|
| 368 |
+
logging.warning(f"Password reset attempt for non-existent email: {email}")
|
| 369 |
+
return jsonify({'message': 'User not found!'}), 404
|
| 370 |
+
|
| 371 |
+
# Hash the new password and update it
|
| 372 |
+
hashed_pw = generate_password_hash(new_password)
|
| 373 |
+
users_collection.update_one({'email': email}, {'$set': {'password': hashed_pw}})
|
| 374 |
+
|
| 375 |
+
logging.info(f"Password successfully reset for email: {email}")
|
| 376 |
+
return jsonify({'message': 'Password updated successfully!'}), 200
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
# π£ Contact Form Route (React Page: Contact)
|
| 384 |
+
@app.route('/Contact', methods=['POST'])
|
| 385 |
+
def contact():
|
| 386 |
+
data = request.get_json()
|
| 387 |
+
email = data.get('email')
|
| 388 |
+
query = data.get('query')
|
| 389 |
+
message = data.get('message')
|
| 390 |
+
|
| 391 |
+
# Check if all fields are provided
|
| 392 |
+
if not email or not query or not message:
|
| 393 |
+
logging.warning(f"Incomplete contact form submission from email: {email}")
|
| 394 |
+
return jsonify({'message': 'All fields are required!'}), 400
|
| 395 |
+
|
| 396 |
+
# Insert the contact data
|
| 397 |
+
contact_data = {
|
| 398 |
+
'email': email,
|
| 399 |
+
'query': query,
|
| 400 |
+
'message': message
|
| 401 |
+
}
|
| 402 |
+
contacts_collection.insert_one(contact_data)
|
| 403 |
+
|
| 404 |
+
logging.info(f"Contact form submitted successfully from email: {email}")
|
| 405 |
+
return jsonify({'message': 'Your message has been sent successfully.'}), 200
|
| 406 |
+
|
| 407 |
+
if __name__ == '__main__':
|
| 408 |
+
app.run(debug=True)
|
requirements.txt
ADDED
|
Binary file (1.07 kB). View file
|
|
|