Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import json | |
| import os | |
| import time | |
| from pathlib import Path | |
| import anthropic | |
| import gradio as gr | |
| import numpy as np | |
| from dotenv import load_dotenv | |
| from elevenlabs import ElevenLabs | |
| from fastapi import FastAPI | |
| from fastapi.responses import HTMLResponse, StreamingResponse | |
| from fastrtc import ( | |
| AdditionalOutputs, | |
| ReplyOnPause, | |
| Stream, | |
| get_tts_model, | |
| get_twilio_turn_credentials, | |
| ) | |
| from fastrtc.utils import audio_to_bytes | |
| from gradio.utils import get_space | |
| from groq import Groq | |
| from pydantic import BaseModel | |
| load_dotenv() | |
| groq_client = Groq() | |
| claude_client = anthropic.Anthropic() | |
| tts_client = ElevenLabs(api_key=os.environ["ELEVENLABS_API_KEY"]) | |
| curr_dir = Path(__file__).parent | |
| tts_model = get_tts_model() | |
| def response( | |
| audio: tuple[int, np.ndarray], | |
| chatbot: list[dict] | None = None, | |
| ): | |
| chatbot = chatbot or [] | |
| messages = [{"role": d["role"], "content": d["content"]} for d in chatbot] | |
| prompt = groq_client.audio.transcriptions.create( | |
| file=("audio-file.mp3", audio_to_bytes(audio)), | |
| model="whisper-large-v3-turbo", | |
| response_format="verbose_json", | |
| ).text | |
| chatbot.append({"role": "user", "content": prompt}) | |
| yield AdditionalOutputs(chatbot) | |
| messages.append({"role": "user", "content": prompt}) | |
| response = claude_client.messages.create( | |
| model="claude-3-5-haiku-20241022", | |
| max_tokens=512, | |
| messages=messages, # type: ignore | |
| ) | |
| response_text = " ".join( | |
| block.text # type: ignore | |
| for block in response.content | |
| if getattr(block, "type", None) == "text" | |
| ) | |
| chatbot.append({"role": "assistant", "content": response_text}) | |
| start = time.time() | |
| print("starting tts", start) | |
| for i, chunk in enumerate(tts_model.stream_tts_sync(response_text)): | |
| print("chunk", i, time.time() - start) | |
| yield chunk | |
| print("finished tts", time.time() - start) | |
| yield AdditionalOutputs(chatbot) | |
| chatbot = gr.Chatbot(type="messages") | |
| stream = Stream( | |
| modality="audio", | |
| mode="send-receive", | |
| handler=ReplyOnPause(response), | |
| additional_outputs_handler=lambda a, b: b, | |
| additional_inputs=[chatbot], | |
| additional_outputs=[chatbot], | |
| rtc_configuration=get_twilio_turn_credentials() if get_space() else None, | |
| concurrency_limit=5 if get_space() else None, | |
| time_limit=90 if get_space() else None, | |
| ) | |
| class Message(BaseModel): | |
| role: str | |
| content: str | |
| class InputData(BaseModel): | |
| webrtc_id: str | |
| chatbot: list[Message] | |
| app = FastAPI() | |
| stream.mount(app) | |
| async def _(): | |
| rtc_config = get_twilio_turn_credentials() if get_space() else None | |
| html_content = (curr_dir / "index.html").read_text() | |
| html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config)) | |
| return HTMLResponse(content=html_content, status_code=200) | |
| async def _(body: InputData): | |
| stream.set_input(body.webrtc_id, body.model_dump()["chatbot"]) | |
| return {"status": "ok"} | |
| def _(webrtc_id: str): | |
| async def output_stream(): | |
| async for output in stream.output_stream(webrtc_id): | |
| chatbot = output.args[0] | |
| yield f"event: output\ndata: {json.dumps(chatbot[-1])}\n\n" | |
| return StreamingResponse(output_stream(), media_type="text/event-stream") | |
| if __name__ == "__main__": | |
| import os | |
| if (mode := os.getenv("MODE")) == "UI": | |
| stream.ui.launch(server_port=7860, server_name="0.0.0.0") | |
| elif mode == "PHONE": | |
| stream.fastphone(host="0.0.0.0", port=7860) | |
| else: | |
| import uvicorn | |
| uvicorn.run(app, host="0.0.0.0", port=7860) | |