First commit
Browse files- app.py +62 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import argparse
|
| 3 |
+
import torch
|
| 4 |
+
import re
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from threading import Thread
|
| 7 |
+
from transformers import TextIteratorStreamer, AutoTokenizer, AutoModelForCausalLM
|
| 8 |
+
|
| 9 |
+
parser = argparse.ArgumentParser()
|
| 10 |
+
|
| 11 |
+
if torch.cuda.is_available():
|
| 12 |
+
device, dtype = "cuda", torch.float16
|
| 13 |
+
else:
|
| 14 |
+
device, dtype = "cpu", torch.float32
|
| 15 |
+
|
| 16 |
+
model_id = "vikhyatk/moondream2"
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, revision="2024-03-06")
|
| 18 |
+
moondream = AutoModelForCausalLM.from_pretrained(
|
| 19 |
+
model_id, trust_remote_code=True, revision="2024-03-06"
|
| 20 |
+
).to(device=device, dtype=dtype)
|
| 21 |
+
moondream.eval()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@spaces.GPU(duration=10)
|
| 25 |
+
def answer_question(img, prompt):
|
| 26 |
+
image_embeds = moondream.encode_image(img)
|
| 27 |
+
streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
|
| 28 |
+
thread = Thread(
|
| 29 |
+
target=moondream.answer_question,
|
| 30 |
+
kwargs={
|
| 31 |
+
"image_embeds": image_embeds,
|
| 32 |
+
"question": prompt,
|
| 33 |
+
"tokenizer": tokenizer,
|
| 34 |
+
"streamer": streamer,
|
| 35 |
+
},
|
| 36 |
+
)
|
| 37 |
+
thread.start()
|
| 38 |
+
|
| 39 |
+
buffer = ""
|
| 40 |
+
for new_text in streamer:
|
| 41 |
+
clean_text = re.sub("<$|<END$", "", new_text)
|
| 42 |
+
buffer += clean_text
|
| 43 |
+
yield buffer
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
with gr.Blocks() as demo:
|
| 47 |
+
gr.Markdown(
|
| 48 |
+
"""
|
| 49 |
+
# 🌔 moondream2
|
| 50 |
+
A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)
|
| 51 |
+
"""
|
| 52 |
+
)
|
| 53 |
+
with gr.Row():
|
| 54 |
+
prompt = gr.Textbox(label="Input", placeholder="Type here...", scale=4)
|
| 55 |
+
submit = gr.Button("Submit")
|
| 56 |
+
with gr.Row():
|
| 57 |
+
img = gr.Image(type="pil", label="Upload an Image")
|
| 58 |
+
output = gr.TextArea(label="Response")
|
| 59 |
+
submit.click(answer_question, [img, prompt], output)
|
| 60 |
+
prompt.submit(answer_question, [img, prompt], output)
|
| 61 |
+
|
| 62 |
+
demo.queue().launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
timm==0.9.12
|
| 2 |
+
transformers==4.36.2
|
| 3 |
+
einops==0.7.0
|