Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| def classify(input_img): | |
| from transformers import ( | |
| AutoModelForSequenceClassification, | |
| LayoutLMv2FeatureExtractor, | |
| LayoutLMv2Tokenizer, | |
| LayoutLMv2Processor, | |
| ) | |
| model = AutoModelForSequenceClassification.from_pretrained( | |
| "fedihch/InvoiceReceiptClassifier" | |
| ) | |
| feature_extractor = LayoutLMv2FeatureExtractor() | |
| tokenizer = LayoutLMv2Tokenizer.from_pretrained("microsoft/layoutlmv2-base-uncased") | |
| processor = LayoutLMv2Processor(feature_extractor, tokenizer) | |
| encoded_inputs = processor(input_img, return_tensors="pt") | |
| for k, v in encoded_inputs.items(): | |
| encoded_inputs[k] = v.to(model.device) | |
| outputs = model(**encoded_inputs) | |
| logits = outputs.logits | |
| predicted_class_idx = logits.argmax(-1).item() | |
| id2label = {0: "invoice", 1: "receipt"} | |
| return id2label[predicted_class_idx] | |
| demo = gr.Interface( | |
| fn=classify, | |
| inputs=gr.Image(shape=(200, 200)), | |
| outputs="text", | |
| allow_flagging="manual", | |
| ) | |
| demo.launch(share=True) | |