Spaces:
Runtime error
Runtime error
| #from transformers import AlbertTokenizer, AlbertModel | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| from sentence_transformers import SentenceTransformer | |
| #This is a quick evaluation on a few cases | |
| # base | |
| # large | |
| #tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') | |
| #model = AlbertModel.from_pretrained("albert-base-v2") | |
| #'sentence-transformers/paraphrase-albert-base-v2' | |
| model_name = 'output/training_OnlineConstrativeLoss-2023-03-09_23-55-34' | |
| model_sbert = SentenceTransformer(model_name) | |
| def get_sbert_embedding(input_text): | |
| embedding = model_sbert.encode(input_text) | |
| return embedding.tolist() | |
| a1 = "65 Mountain Blvd Ext, Warren, NJ 07059" | |
| a2 = "112 Mountain Blvd Ext, Warren, NJ 07059" | |
| a3 = "1677 NJ-27 #2, Edison, NJ 08817" | |
| a4 = "5078 S Maryland Pkwy, Las Vegas, NV 89119" | |
| a5 = "65 Mountain Boulevard Ext, Warren, NJ 07059" | |
| a6 = "123 Broad St, New York, NY, 10304-2345" | |
| a7 = "440 TECHNOLOGY CENTER DRIVE, Boston, MA 10034" | |
| a8 = "200 Technology Center Drive, Boston, MA 10034" | |
| a8x= "87 Technology Center Drive, Boston, MA 10034" | |
| a9 = "440 Technology Center Dr., Boston, MA 10034-0345" | |
| a10 = "440 Technology Center Dr., Boston, MA 10034" | |
| #def get_embedding(input_text): | |
| # encoded_input = tokenizer(input_text, return_tensors='pt') | |
| # input_ids = encoded_input.input_ids | |
| # input_num_tokens = input_ids.shape[1] | |
| # | |
| # print( "Number of input tokens: " + str(input_num_tokens)) | |
| # print("Length of input: " + str(len(input_text))) | |
| # | |
| # list_of_tokens = tokenizer.convert_ids_to_tokens(input_ids.view(-1).tolist()) | |
| # | |
| # print( "Tokens : " + ' '.join(list_of_tokens)) | |
| # with torch.no_grad(): | |
| # | |
| # outputs = model(**encoded_input) | |
| # last_hidden_states = outputs[0] | |
| # sentence_embedding = torch.mean(last_hidden_states[0], dim=0) | |
| # #sentence_embedding = output.last_hidden_state[0][0] | |
| # return sentence_embedding.tolist() | |
| e1 = get_sbert_embedding(a1) | |
| e2 = get_sbert_embedding(a2) | |
| #e3 = get_sbert_embedding(a3) | |
| e4 = get_sbert_embedding(a4) | |
| e5 = get_sbert_embedding(a5) | |
| e6 = get_sbert_embedding(a6) | |
| e7 = get_sbert_embedding(a7) | |
| e8 = get_sbert_embedding(a8) | |
| e8x = get_sbert_embedding(a8x) | |
| e9 = get_sbert_embedding(a9) | |
| e10 = get_sbert_embedding(a10) | |
| print(f"a1 \"{a1}\" to \"{a2}\" a2") | |
| print(cosine_similarity([e1], [e2])) | |
| print(f"a1 \"{a1}\" to \"{a4}\" a4") | |
| print(cosine_similarity([e1], [e4])) | |
| print(f"a1 \"{a1}\" to \"{a5}\" a5") | |
| print(cosine_similarity([e1], [e5])) | |
| print(f"a7 \"{a7}\" to \"{a8}\" a8") | |
| print(cosine_similarity([e7], [e8])) | |
| print(f"a7 \"{a7}\" to \"{a8x}\" a8x") | |
| print(cosine_similarity([e7], [e8x])) | |
| print(f"a7 \"{a7}\" to \"{a9}\" a9") | |
| print(cosine_similarity([e7], [e9])) | |
| print(f"a7 \"{a7}\" to \"{a10}\" a10") | |
| print(cosine_similarity([e7], [e10])) | |
| # with base | |
| #a1 to a2 | |
| #[[0.99512167]] | |
| #a1 to a4 | |
| #[[0.94850088]] | |
| #a1 to a5 | |
| #[[0.99636901]] | |
| # with large | |
| #a1 to a2 | |
| #[[0.99682108]] | |
| #a1 to a4 | |
| #[[0.94006972]] | |
| #a1 to a5 | |
| #[[0.99503919]] |