Spaces:
Runtime error
Runtime error
| import math | |
| import streamlit as st | |
| import pandas as pd | |
| import numpy as np | |
| import torch | |
| from transformers import AlbertTokenizer, AlbertModel | |
| from sentence_transformers import SentenceTransformer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| from io import BytesIO | |
| # base is smaller, vs large | |
| model_size='base' | |
| tokenizer = AlbertTokenizer.from_pretrained('albert-' + model_size + '-v2') | |
| model = AlbertModel.from_pretrained('albert-' + model_size + '-v2') | |
| model_sbert = SentenceTransformer('sentence-transformers/paraphrase-albert-base-v2') | |
| # for regular burt 0.98 | |
| similarity_threshold = 0.8 | |
| def get_sbert_embedding(input_text): | |
| embedding = model_sbert.encode(input_text) | |
| return embedding.tolist() | |
| def get_embedding(input_text): | |
| encoded_input = tokenizer(input_text, return_tensors='pt') | |
| input_ids = encoded_input.input_ids | |
| #input_num_tokens = input_ids.shape[1] | |
| #print( "Number of input tokens: " + str(input_num_tokens)) | |
| #print("Length of input: " + str(len(input_text))) | |
| list_of_tokens = tokenizer.convert_ids_to_tokens(input_ids.view(-1).tolist()) | |
| #print( "Tokens : " + ' '.join(list_of_tokens)) | |
| with torch.no_grad(): | |
| outputs = model(**encoded_input) | |
| last_hidden_states = outputs[0] | |
| sentence_embedding = torch.mean(last_hidden_states[0], dim=0) | |
| #sentence_embedding = output.last_hidden_state[0][0] | |
| return sentence_embedding.tolist() | |
| st.set_page_config(layout="wide") | |
| st.title('Upload the Address Dataset') | |
| st.markdown('Upload an Excel file to view the data in a table.') | |
| uploaded_file = st.file_uploader('Choose a file', type='xlsx') | |
| if uploaded_file is not None: | |
| data_caqh = pd.read_excel(uploaded_file, sheet_name='CAQH', dtype=str) | |
| data_ndb = pd.read_excel(uploaded_file, sheet_name='NDB', dtype=str) | |
| # Data cleaning CAQH | |
| data_caqh['postalcode'] = data_caqh['postalcode'].astype(str).apply(lambda x: x[:5] + '-' + x[5:] if len(x) > 5 and not '-' in x else x) | |
| data_caqh['full-addr'] = data_caqh['address1'].astype(str) + ', ' \ | |
| + np.where(data_caqh['address2'].isnull(), '' , data_caqh['address2'].astype(str)+ ', ') \ | |
| + data_caqh['city'].astype(str) + ', '\ | |
| + data_caqh['state'].astype(str) + ', ' \ | |
| + data_caqh['postalcode'].astype(str) | |
| st.write(f"CAQH before duplicate removal {len(data_caqh)}") | |
| data_caqh.drop_duplicates(subset='full-addr',inplace=True) | |
| data_caqh = data_caqh.reset_index(drop=True) # reset the index. | |
| st.write(f"CAQH after duplicate removal {len(data_caqh)}") | |
| # Data cleaning NDB | |
| data_ndb['zip_pls_4_cd'] = data_ndb['zip_pls_4_cd'].astype(str).apply(lambda x: x if (x[-1] != '0' and x[-1] != '1') else '') | |
| data_ndb['zip_cd_zip_pls_4_cd'] = data_ndb['zip_cd'].astype(str) +\ | |
| np.where( data_ndb['zip_pls_4_cd'] == '', '', '-' \ | |
| + data_ndb['zip_pls_4_cd'].astype(str)) | |
| data_ndb['full-addr'] = data_ndb['adr_ln_1_txt'].astype(str).str.strip() + ', ' \ | |
| + data_ndb['cty_nm'].astype(str).str.strip() + ', ' \ | |
| + data_ndb['st_cd'].astype(str) + ', ' + data_ndb['zip_cd_zip_pls_4_cd'] | |
| # Calculate similarity For CAQH | |
| num_items = len(data_caqh) | |
| progress_bar = st.progress(0) | |
| total_steps = 100 | |
| step_size = math.ceil(num_items / total_steps) | |
| data_caqh['embedding'] = 0 | |
| embedding_col_index = data_caqh.columns.get_loc('embedding') | |
| full_addr_col_index = data_caqh.columns.get_loc('full-addr') | |
| for i in range(total_steps): | |
| # Update progress bar | |
| progress = (i + 1) / total_steps | |
| # Process a batch of rows | |
| start = i * step_size | |
| end = start + step_size | |
| stop_iter = False | |
| if end >= num_items: | |
| end = num_items | |
| stop_iter = True | |
| data_caqh.iloc[start:end, embedding_col_index] = data_caqh.iloc[start:end, full_addr_col_index].apply(get_sbert_embedding) | |
| progress_bar.progress(value=progress, text=f"CAQH embeddings: {(i + 1) * step_size} processed out of {num_items}") | |
| if stop_iter: | |
| break | |
| st.write(f"Embeddings for CAQH calculated") | |
| # Calculate similarity For NDB | |
| num_items = len(data_ndb) | |
| progress_bar = st.progress(0) | |
| total_steps = 100 | |
| step_size = math.ceil(num_items / total_steps) | |
| data_ndb['embedding'] = 0 | |
| embedding_col_index = data_ndb.columns.get_loc('embedding') | |
| full_addr_col_index = data_ndb.columns.get_loc('full-addr') | |
| for i in range(total_steps): | |
| # Update progress bar | |
| progress = (i + 1) / total_steps | |
| # Process a batch of rows | |
| start = i * step_size | |
| end = start + step_size | |
| stop_iter = False | |
| if end >= num_items: | |
| end = num_items | |
| stop_iter = True | |
| # or get_embedding | |
| data_ndb.iloc[start:end, embedding_col_index] = data_ndb.iloc[start:end, full_addr_col_index].apply(get_sbert_embedding) | |
| progress_bar.progress(value=progress, text=f"NDB embeddings: {(i + 1) * step_size} processed out of {num_items}") | |
| if stop_iter: | |
| break | |
| st.write(f"Embeddings for NDB calculated... matching") | |
| progress_bar = st.progress(0) | |
| num_items = len(data_caqh) | |
| for i, row in data_caqh.iterrows(): | |
| max_similarity = 0 | |
| matched_row = None | |
| for j, ndb_row in data_ndb.iterrows(): | |
| sim = cosine_similarity([row['embedding']], [ndb_row['embedding']]) | |
| if sim > max_similarity: | |
| max_similarity = sim | |
| matched_row = ndb_row | |
| if max_similarity >= similarity_threshold: | |
| data_caqh.at[i, 'matched-addr'] = matched_row['full-addr'] | |
| data_caqh.at[i, 'similarity-score'] = max_similarity | |
| else: | |
| print(f"max similarity was {max_similarity}") | |
| data_caqh.at[i, 'matched-addr'] = 'No Matches' | |
| progress = i / num_items | |
| if progress > 1.0: | |
| progress = 1.0 | |
| progress_bar.progress(value=progress, text=f"matching similarities - {i} done out of {num_items}") | |
| # Drop columns not needed for display | |
| data_caqh.drop(columns=['embedding'], inplace=True) | |
| data_ndb.drop(columns=['embedding'], inplace=True) | |
| st.header('CAQH addresses and matches') | |
| st.dataframe(data_caqh, use_container_width=True) | |
| # Calculate stats. | |
| total_items = len(data_caqh) | |
| item_without_matches = data_caqh['matched-addr'].value_counts().get('No Matches', 0) | |
| items_with_matches = total_items - item_without_matches; | |
| percent_matched = (items_with_matches/total_items)*100.0 | |
| st.write(f"From total matches {total_items}, {items_with_matches} items matched, {item_without_matches} items did not match, {percent_matched:.2f}% matched") | |
| # Create an in-memory binary stream | |
| output = BytesIO() | |
| # Save the DataFrame to the binary stream as an Excel file | |
| with pd.ExcelWriter(output, engine='xlsxwriter') as writer: | |
| data_caqh.to_excel(writer, sheet_name='Sheet1', index=False) | |
| writer.save() | |
| # Get the binary data from the stream | |
| data = output.getvalue() | |
| # Add a download button for the Excel file | |
| st.download_button( | |
| label='Download CAQH matches as Excel file', | |
| data=data, | |
| file_name='data.xlsx', | |
| mime='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' | |
| ) | |
| st.header('NDB data') | |
| st.dataframe(data_ndb, use_container_width=True) | |