Spaces:
Runtime error
Runtime error
Feliks Zaslavskiy
commited on
Commit
·
4132514
1
Parent(s):
b5b5700
Updaets
Browse files
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 💩
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: gray
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Address matching Example
|
| 3 |
emoji: 💩
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: gray
|
app.py
CHANGED
|
@@ -1,8 +1,31 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
st.markdown('Upload an Excel file to view the data in a table.')
|
| 8 |
|
|
@@ -13,20 +36,44 @@ if uploaded_file is not None:
|
|
| 13 |
data_caqh = pd.read_excel(uploaded_file, sheet_name='CAQH')
|
| 14 |
data_ndb = pd.read_excel(uploaded_file, sheet_name='NDB')
|
| 15 |
|
|
|
|
|
|
|
| 16 |
data_caqh['full-addr'] = data_caqh['address1'].astype(str) + ', ' \
|
| 17 |
+ np.where(data_caqh['address2'].isnull(), '' , data_caqh['address2'].astype(str)) \
|
| 18 |
+ data_caqh['city'].astype(str) + ', '\
|
| 19 |
+ data_caqh['state'].astype(str) + ', ' \
|
| 20 |
+ data_caqh['postalcode'].astype(str)
|
| 21 |
|
|
|
|
| 22 |
data_ndb['zip_pls_4_cd'] = data_ndb['zip_pls_4_cd'].astype(str).apply(lambda x: x if (x[-1] != '0' and x[-1] != '1') else '')
|
| 23 |
|
| 24 |
data_ndb['zip_cd_zip_pls_4_cd'] = data_ndb['zip_cd'].astype(str) +\
|
| 25 |
-
np.where( data_ndb['zip_pls_4_cd']
|
| 26 |
+ data_ndb['zip_pls_4_cd'].astype(str))
|
| 27 |
|
| 28 |
-
data_ndb['full-addr'] = data_ndb['adr_ln_1_txt'].astype(str) + ', ' \
|
| 29 |
+ data_ndb['st_cd'].astype(str) + ', ' + data_ndb['zip_cd_zip_pls_4_cd']
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
st.dataframe(data_caqh)
|
| 32 |
-
st.dataframe(data_ndb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
#from transformers import AlbertTokenizer, AlbertModel
|
| 6 |
+
#from sklearn.metrics.pairwise import cosine_similarity
|
| 7 |
|
| 8 |
+
#tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
|
| 9 |
+
#model = AlbertModel.from_pretrained("albert-base-v2")
|
| 10 |
+
|
| 11 |
+
#def get_embedding(input_text):
|
| 12 |
+
# encoded_input = tokenizer(input_text, return_tensors='pt')
|
| 13 |
+
# input_ids = encoded_input.input_ids
|
| 14 |
+
# input_num_tokens = input_ids.shape[1]
|
| 15 |
+
#
|
| 16 |
+
# #print( "Number of input tokens: " + str(input_num_tokens))
|
| 17 |
+
# #print("Length of input: " + str(len(input_text)))
|
| 18 |
+
#
|
| 19 |
+
# list_of_tokens = tokenizer.convert_ids_to_tokens(input_ids.view(-1).tolist())
|
| 20 |
+
#
|
| 21 |
+
# #print( "Tokens : " + ' '.join(list_of_tokens))
|
| 22 |
+
# with torch.no_grad():
|
| 23 |
+
# output = model(**encoded_input)
|
| 24 |
+
#
|
| 25 |
+
# embedding = output.last_hidden_state[0][0]
|
| 26 |
+
# return embedding.tolist()
|
| 27 |
+
|
| 28 |
+
st.title('Upload the Address Dataset')
|
| 29 |
|
| 30 |
st.markdown('Upload an Excel file to view the data in a table.')
|
| 31 |
|
|
|
|
| 36 |
data_caqh = pd.read_excel(uploaded_file, sheet_name='CAQH')
|
| 37 |
data_ndb = pd.read_excel(uploaded_file, sheet_name='NDB')
|
| 38 |
|
| 39 |
+
# Data cleaning CAQH
|
| 40 |
+
data_caqh['postalcode'] = data_caqh['postalcode'].astype(str).apply(lambda x: x[:5] + '-' + x[5:] if len(x) > 5 and not '-' in x else x)
|
| 41 |
data_caqh['full-addr'] = data_caqh['address1'].astype(str) + ', ' \
|
| 42 |
+ np.where(data_caqh['address2'].isnull(), '' , data_caqh['address2'].astype(str)) \
|
| 43 |
+ data_caqh['city'].astype(str) + ', '\
|
| 44 |
+ data_caqh['state'].astype(str) + ', ' \
|
| 45 |
+ data_caqh['postalcode'].astype(str)
|
| 46 |
|
| 47 |
+
# Data cleaning NDB
|
| 48 |
data_ndb['zip_pls_4_cd'] = data_ndb['zip_pls_4_cd'].astype(str).apply(lambda x: x if (x[-1] != '0' and x[-1] != '1') else '')
|
| 49 |
|
| 50 |
data_ndb['zip_cd_zip_pls_4_cd'] = data_ndb['zip_cd'].astype(str) +\
|
| 51 |
+
np.where( data_ndb['zip_pls_4_cd'] == '', '', '-' \
|
| 52 |
+ data_ndb['zip_pls_4_cd'].astype(str))
|
| 53 |
|
| 54 |
+
data_ndb['full-addr'] = data_ndb['adr_ln_1_txt'].astype(str).str.strip() + ', ' \
|
| 55 |
+ data_ndb['st_cd'].astype(str) + ', ' + data_ndb['zip_cd_zip_pls_4_cd']
|
| 56 |
|
| 57 |
+
# Add a matched column
|
| 58 |
+
data_caqh['matched-addr'] = ''
|
| 59 |
+
|
| 60 |
+
# App
|
| 61 |
+
#data_caqh['embed'] = data_caqh['full-addr'].apply(get_embedding)
|
| 62 |
+
|
| 63 |
st.dataframe(data_caqh)
|
| 64 |
+
st.dataframe(data_ndb)
|
| 65 |
+
|
| 66 |
+
# Do some matching
|
| 67 |
+
#data_caqh.loc[data_caqh['full-addr'] == '1000 Vale Terrace, Vista, CA, 92084', 'matched-addr'] = '456 Main St'
|
| 68 |
+
#time.sleep(10)
|
| 69 |
+
#st.dataframe(data_caqh)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
data.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
from transformers import AlbertTokenizer, AlbertModel
|
| 2 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
|
| 7 |
a1 = "65 Mountain Blvd Ext, Warren, NJ 07059"
|
| 8 |
a2 = "112 Mountain Blvd Ext, Warren, NJ 07059"
|
|
@@ -32,11 +34,11 @@ e2 = get_embedding(a2)
|
|
| 32 |
e4 = get_embedding(a4)
|
| 33 |
e5 = get_embedding(a5)
|
| 34 |
|
| 35 |
-
print("a1 to a2")
|
| 36 |
print(cosine_similarity([e1], [e2]))
|
| 37 |
-
print("a1 to a4")
|
| 38 |
print(cosine_similarity([e1], [e4]))
|
| 39 |
-
print("a1 to a5")
|
| 40 |
print(cosine_similarity([e1], [e5]))
|
| 41 |
|
| 42 |
# with base
|
|
|
|
| 1 |
from transformers import AlbertTokenizer, AlbertModel
|
| 2 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 3 |
|
| 4 |
+
# base
|
| 5 |
+
# large
|
| 6 |
+
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2')
|
| 7 |
+
model = AlbertModel.from_pretrained("albert-base-v2")
|
| 8 |
|
| 9 |
a1 = "65 Mountain Blvd Ext, Warren, NJ 07059"
|
| 10 |
a2 = "112 Mountain Blvd Ext, Warren, NJ 07059"
|
|
|
|
| 34 |
e4 = get_embedding(a4)
|
| 35 |
e5 = get_embedding(a5)
|
| 36 |
|
| 37 |
+
print(f"a1 {a1} to {a2} a2")
|
| 38 |
print(cosine_similarity([e1], [e2]))
|
| 39 |
+
print(f"a1 {a1} to {a4} a4")
|
| 40 |
print(cosine_similarity([e1], [e4]))
|
| 41 |
+
print(f"a1 {a1} to {a5} a5")
|
| 42 |
print(cosine_similarity([e1], [e5]))
|
| 43 |
|
| 44 |
# with base
|
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
streamlit
|
| 2 |
pandas
|
|
|
|
| 3 |
openpyxl
|
|
|
|
| 1 |
streamlit
|
| 2 |
pandas
|
| 3 |
+
numpy
|
| 4 |
openpyxl
|