Spaces:
Runtime error
Runtime error
| # Copyright 2025 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import os | |
| from collections import OrderedDict | |
| from typing import Any | |
| import fire | |
| import torch | |
| from huggingface_hub import split_torch_state_dict_into_shards | |
| from safetensors import safe_open | |
| from safetensors.torch import save_file | |
| from tqdm import tqdm | |
| from transformers.modeling_utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME | |
| from transformers.utils import check_min_version | |
| try: | |
| check_min_version("4.34.0") | |
| except Exception: | |
| raise ValueError("Please upgrade `transformers` to 4.34.0") | |
| CONFIG_NAME = "config.json" | |
| def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool) -> str: | |
| qwen_state_dict: dict[str, torch.Tensor] = OrderedDict() | |
| for filepath in tqdm(os.listdir(input_dir), desc="Load weights"): | |
| if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".safetensors"): | |
| with safe_open(os.path.join(input_dir, filepath), framework="pt", device="cpu") as f: | |
| for key in f.keys(): | |
| qwen_state_dict[key] = f.get_tensor(key) | |
| llama_state_dict: dict[str, torch.Tensor] = OrderedDict() | |
| torch_dtype = None | |
| for key, value in tqdm(qwen_state_dict.items(), desc="Convert format"): | |
| if torch_dtype is None: | |
| torch_dtype = value.dtype | |
| if "wte" in key: | |
| llama_state_dict["model.embed_tokens.weight"] = value | |
| elif "ln_f" in key: | |
| llama_state_dict["model.norm.weight"] = value | |
| else: | |
| key = key.replace("transformer.h", "model.layers") | |
| if "attn.c_attn" in key: | |
| proj_size = value.size(0) // 3 | |
| llama_state_dict[key.replace("attn.c_attn", "self_attn.q_proj")] = value[:proj_size, ...] | |
| llama_state_dict[key.replace("attn.c_attn", "self_attn.k_proj")] = value[ | |
| proj_size : 2 * proj_size, ... | |
| ] | |
| llama_state_dict[key.replace("attn.c_attn", "self_attn.v_proj")] = value[2 * proj_size :, ...] | |
| elif "attn.c_proj" in key: | |
| llama_state_dict[key.replace("attn.c_proj", "self_attn.o_proj")] = value | |
| llama_state_dict[key.replace("attn.c_proj.weight", "self_attn.o_proj.bias")] = torch.zeros_like( | |
| value[:, 0] | |
| ).squeeze() | |
| elif "ln_1" in key: | |
| llama_state_dict[key.replace("ln_1", "input_layernorm")] = value | |
| elif "ln_2" in key: | |
| llama_state_dict[key.replace("ln_2", "post_attention_layernorm")] = value | |
| elif "mlp.w1" in key: | |
| llama_state_dict[key.replace("mlp.w1", "mlp.up_proj")] = value | |
| elif "mlp.w2" in key: | |
| llama_state_dict[key.replace("mlp.w2", "mlp.gate_proj")] = value | |
| elif "mlp.c_proj" in key: | |
| llama_state_dict[key.replace("mlp.c_proj", "mlp.down_proj")] = value | |
| elif "lm_head" in key: | |
| llama_state_dict[key] = value | |
| else: | |
| raise KeyError(f"Unable to process key {key}") | |
| weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME | |
| filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors") | |
| state_dict_split = split_torch_state_dict_into_shards( | |
| llama_state_dict, filename_pattern=filename_pattern, max_shard_size=shard_size | |
| ) | |
| for shard_file, tensors in tqdm(state_dict_split.filename_to_tensors.items(), desc="Save weights"): | |
| shard = {tensor: llama_state_dict[tensor].contiguous() for tensor in tensors} | |
| if save_safetensors: | |
| save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) | |
| else: | |
| torch.save(shard, os.path.join(output_dir, shard_file)) | |
| if not state_dict_split.is_sharded: | |
| print(f"Model weights saved in {os.path.join(output_dir, weights_name)}.") | |
| else: | |
| index = { | |
| "metadata": state_dict_split.metadata, | |
| "weight_map": state_dict_split.tensor_to_filename, | |
| } | |
| index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME | |
| with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: | |
| json.dump(index, f, indent=2, sort_keys=True) | |
| print(f"Model weights saved in {output_dir}.") | |
| return str(torch_dtype).replace("torch.", "") | |
| def save_config(input_dir: str, output_dir: str, torch_dtype: str): | |
| with open(os.path.join(input_dir, CONFIG_NAME), encoding="utf-8") as f: | |
| qwen_config_dict: dict[str, Any] = json.load(f) | |
| llama2_config_dict: dict[str, Any] = OrderedDict() | |
| llama2_config_dict["architectures"] = ["LlamaForCausalLM"] | |
| llama2_config_dict["hidden_act"] = "silu" | |
| llama2_config_dict["hidden_size"] = qwen_config_dict["hidden_size"] | |
| llama2_config_dict["initializer_range"] = qwen_config_dict["initializer_range"] | |
| llama2_config_dict["intermediate_size"] = qwen_config_dict["intermediate_size"] // 2 | |
| llama2_config_dict["max_position_embeddings"] = qwen_config_dict["max_position_embeddings"] | |
| llama2_config_dict["model_type"] = "llama" | |
| llama2_config_dict["num_attention_heads"] = qwen_config_dict["num_attention_heads"] | |
| llama2_config_dict["num_hidden_layers"] = qwen_config_dict["num_hidden_layers"] | |
| llama2_config_dict["num_key_value_heads"] = qwen_config_dict["hidden_size"] // qwen_config_dict["kv_channels"] | |
| llama2_config_dict["pretraining_tp"] = 1 | |
| llama2_config_dict["rms_norm_eps"] = qwen_config_dict["layer_norm_epsilon"] | |
| llama2_config_dict["rope_scaling"] = None | |
| llama2_config_dict["tie_word_embeddings"] = qwen_config_dict["tie_word_embeddings"] | |
| llama2_config_dict["torch_dtype"] = torch_dtype | |
| llama2_config_dict["transformers_version"] = "4.34.0" | |
| llama2_config_dict["use_cache"] = True | |
| llama2_config_dict["vocab_size"] = qwen_config_dict["vocab_size"] | |
| llama2_config_dict["attention_bias"] = True | |
| with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f: | |
| json.dump(llama2_config_dict, f, indent=2) | |
| print(f"Model config saved in {os.path.join(output_dir, CONFIG_NAME)}") | |
| def llamafy_qwen( | |
| input_dir: str, | |
| output_dir: str, | |
| shard_size: str = "2GB", | |
| save_safetensors: bool = False, | |
| ): | |
| r"""Convert the Qwen models in the same format as LLaMA2. | |
| Usage: python llamafy_qwen.py --input_dir input --output_dir output | |
| Converted model: https://huggingface.co/hiyouga/Qwen-14B-Chat-LLaMAfied | |
| """ | |
| try: | |
| os.makedirs(output_dir, exist_ok=False) | |
| except Exception as e: | |
| raise print("Output dir already exists", e) | |
| torch_dtype = save_weight(input_dir, output_dir, shard_size, save_safetensors) | |
| save_config(input_dir, output_dir, torch_dtype) | |
| if __name__ == "__main__": | |
| fire.Fire(llamafy_qwen) | |