Spaces:
Paused
Paused
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import os | |
| import json | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.utils import BaseOutput, logging | |
| from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
| from diffusers import ModelMixin | |
| from .controlnet_unet_blocks import ( | |
| CrossAttnDownBlock3D, | |
| DownBlock3D, | |
| UNetMidBlock3DCrossAttn, | |
| get_down_block, | |
| ) | |
| from .resnet import InflatedConv3d | |
| from diffusers.models.unet_2d_condition import UNet2DConditionModel | |
| from diffusers.models.cross_attention import AttnProcessor | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class ControlNetOutput(BaseOutput): | |
| down_block_res_samples: Tuple[torch.Tensor] | |
| mid_block_res_sample: torch.Tensor | |
| class ControlNetConditioningEmbedding(nn.Module): | |
| """ | |
| Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN | |
| [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized | |
| training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the | |
| convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides | |
| (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full | |
| model) to encode image-space conditions ... into feature maps ..." | |
| """ | |
| def __init__( | |
| self, | |
| conditioning_embedding_channels: int, | |
| conditioning_channels: int = 3, | |
| block_out_channels: Tuple[int] = (16, 32, 96, 256), | |
| ): | |
| super().__init__() | |
| self.conv_in = InflatedConv3d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) | |
| self.blocks = nn.ModuleList([]) | |
| for i in range(len(block_out_channels) - 1): | |
| channel_in = block_out_channels[i] | |
| channel_out = block_out_channels[i + 1] | |
| self.blocks.append(InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)) | |
| self.blocks.append(InflatedConv3d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)) | |
| self.conv_out = zero_module( | |
| InflatedConv3d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) | |
| ) | |
| def forward(self, conditioning): | |
| embedding = self.conv_in(conditioning) | |
| embedding = F.silu(embedding) | |
| for block in self.blocks: | |
| embedding = block(embedding) | |
| embedding = F.silu(embedding) | |
| embedding = self.conv_out(embedding) | |
| return embedding | |
| class ControlNetModel3D(ModelMixin, ConfigMixin): | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels: int = 4, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| down_block_types: Tuple[str] = ( | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "DownBlock3D", | |
| ), | |
| only_cross_attention: Union[bool, Tuple[bool]] = False, | |
| block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
| layers_per_block: int = 2, | |
| downsample_padding: int = 1, | |
| mid_block_scale_factor: float = 1, | |
| act_fn: str = "silu", | |
| norm_num_groups: Optional[int] = 32, | |
| norm_eps: float = 1e-5, | |
| cross_attention_dim: int = 1280, | |
| attention_head_dim: Union[int, Tuple[int]] = 8, | |
| dual_cross_attention: bool = False, | |
| use_linear_projection: bool = False, | |
| class_embed_type: Optional[str] = None, | |
| num_class_embeds: Optional[int] = None, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| projection_class_embeddings_input_dim: Optional[int] = None, | |
| controlnet_conditioning_channel_order: str = "rgb", | |
| conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256), | |
| ): | |
| super().__init__() | |
| # Check inputs | |
| if len(block_out_channels) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." | |
| ) | |
| if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): | |
| raise ValueError( | |
| f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." | |
| ) | |
| # input | |
| conv_in_kernel = 3 | |
| conv_in_padding = (conv_in_kernel - 1) // 2 | |
| self.conv_in = InflatedConv3d( | |
| in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding | |
| ) | |
| # time | |
| time_embed_dim = block_out_channels[0] * 4 | |
| self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
| timestep_input_dim = block_out_channels[0] | |
| self.time_embedding = TimestepEmbedding( | |
| timestep_input_dim, | |
| time_embed_dim, | |
| act_fn=act_fn, | |
| ) | |
| # class embedding | |
| if class_embed_type is None and num_class_embeds is not None: | |
| self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) | |
| elif class_embed_type == "timestep": | |
| self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
| elif class_embed_type == "identity": | |
| self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
| elif class_embed_type == "projection": | |
| if projection_class_embeddings_input_dim is None: | |
| raise ValueError( | |
| "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" | |
| ) | |
| # The projection `class_embed_type` is the same as the timestep `class_embed_type` except | |
| # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings | |
| # 2. it projects from an arbitrary input dimension. | |
| # | |
| # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations. | |
| # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings. | |
| # As a result, `TimestepEmbedding` can be passed arbitrary vectors. | |
| self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) | |
| else: | |
| self.class_embedding = None | |
| # control net conditioning embedding | |
| self.controlnet_cond_embedding = ControlNetConditioningEmbedding( | |
| conditioning_embedding_channels=block_out_channels[0], | |
| block_out_channels=conditioning_embedding_out_channels, | |
| ) | |
| self.down_blocks = nn.ModuleList([]) | |
| self.controlnet_down_blocks = nn.ModuleList([]) | |
| if isinstance(only_cross_attention, bool): | |
| only_cross_attention = [only_cross_attention] * len(down_block_types) | |
| if isinstance(attention_head_dim, int): | |
| attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
| # down | |
| output_channel = block_out_channels[0] | |
| controlnet_block = InflatedConv3d(output_channel, output_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| for i, down_block_type in enumerate(down_block_types): | |
| input_channel = output_channel | |
| output_channel = block_out_channels[i] | |
| is_final_block = i == len(block_out_channels) - 1 | |
| down_block = get_down_block( | |
| down_block_type, | |
| num_layers=layers_per_block, | |
| in_channels=input_channel, | |
| out_channels=output_channel, | |
| temb_channels=time_embed_dim, | |
| add_downsample=not is_final_block, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| resnet_groups=norm_num_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim[i], | |
| downsample_padding=downsample_padding, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention[i], | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| self.down_blocks.append(down_block) | |
| for _ in range(layers_per_block): | |
| controlnet_block = InflatedConv3d(output_channel, output_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| if not is_final_block: | |
| controlnet_block = InflatedConv3d(output_channel, output_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_down_blocks.append(controlnet_block) | |
| # mid | |
| mid_block_channel = block_out_channels[-1] | |
| controlnet_block = InflatedConv3d(mid_block_channel, mid_block_channel, kernel_size=1) | |
| controlnet_block = zero_module(controlnet_block) | |
| self.controlnet_mid_block = controlnet_block | |
| # mid | |
| self.mid_block = UNetMidBlock3DCrossAttn( | |
| in_channels=block_out_channels[-1], | |
| temb_channels=time_embed_dim, | |
| resnet_eps=norm_eps, | |
| resnet_act_fn=act_fn, | |
| output_scale_factor=mid_block_scale_factor, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attention_head_dim[-1], | |
| resnet_groups=norm_num_groups, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| ) | |
| def from_unet( | |
| cls, | |
| unet: UNet2DConditionModel, | |
| controlnet_conditioning_channel_order: str = "rgb", | |
| conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256), | |
| load_weights_from_unet: bool = True, | |
| ): | |
| r""" | |
| Instantiate Controlnet class from UNet2DConditionModel. | |
| Parameters: | |
| unet (`UNet2DConditionModel`): | |
| UNet model which weights are copied to the ControlNet. Note that all configuration options are also | |
| copied where applicable. | |
| """ | |
| controlnet = cls( | |
| in_channels=unet.config.in_channels, | |
| flip_sin_to_cos=unet.config.flip_sin_to_cos, | |
| freq_shift=unet.config.freq_shift, | |
| down_block_types=unet.config.down_block_types, | |
| only_cross_attention=unet.config.only_cross_attention, | |
| block_out_channels=unet.config.block_out_channels, | |
| layers_per_block=unet.config.layers_per_block, | |
| downsample_padding=unet.config.downsample_padding, | |
| mid_block_scale_factor=unet.config.mid_block_scale_factor, | |
| act_fn=unet.config.act_fn, | |
| norm_num_groups=unet.config.norm_num_groups, | |
| norm_eps=unet.config.norm_eps, | |
| cross_attention_dim=unet.config.cross_attention_dim, | |
| attention_head_dim=unet.config.attention_head_dim, | |
| use_linear_projection=unet.config.use_linear_projection, | |
| class_embed_type=unet.config.class_embed_type, | |
| num_class_embeds=unet.config.num_class_embeds, | |
| upcast_attention=unet.config.upcast_attention, | |
| resnet_time_scale_shift=unet.config.resnet_time_scale_shift, | |
| projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, | |
| controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, | |
| conditioning_embedding_out_channels=conditioning_embedding_out_channels, | |
| ) | |
| if load_weights_from_unet: | |
| controlnet.conv_in.load_state_dict(unet.conv_in.state_dict()) | |
| controlnet.time_proj.load_state_dict(unet.time_proj.state_dict()) | |
| controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) | |
| if controlnet.class_embedding: | |
| controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict()) | |
| controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict()) | |
| controlnet.mid_block.load_state_dict(unet.mid_block.state_dict()) | |
| return controlnet | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttnProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttnProcessor]): | |
| if hasattr(module, "set_processor"): | |
| processors[f"{name}.processor"] = module.processor | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttnProcessor, Dict[str, AttnProcessor]]): | |
| r""" | |
| Parameters: | |
| `processor (`dict` of `AttnProcessor` or `AttnProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| of **all** `Attention` layers. | |
| In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.: | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice | |
| def set_attention_slice(self, slice_size): | |
| r""" | |
| Enable sliced attention computation. | |
| When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
| in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
| Args: | |
| slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
| When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
| `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is | |
| provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
| must be a multiple of `slice_size`. | |
| """ | |
| sliceable_head_dims = [] | |
| def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): | |
| if hasattr(module, "set_attention_slice"): | |
| sliceable_head_dims.append(module.sliceable_head_dim) | |
| for child in module.children(): | |
| fn_recursive_retrieve_sliceable_dims(child) | |
| # retrieve number of attention layers | |
| for module in self.children(): | |
| fn_recursive_retrieve_sliceable_dims(module) | |
| num_sliceable_layers = len(sliceable_head_dims) | |
| if slice_size == "auto": | |
| # half the attention head size is usually a good trade-off between | |
| # speed and memory | |
| slice_size = [dim // 2 for dim in sliceable_head_dims] | |
| elif slice_size == "max": | |
| # make smallest slice possible | |
| slice_size = num_sliceable_layers * [1] | |
| slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
| if len(slice_size) != len(sliceable_head_dims): | |
| raise ValueError( | |
| f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
| f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
| ) | |
| for i in range(len(slice_size)): | |
| size = slice_size[i] | |
| dim = sliceable_head_dims[i] | |
| if size is not None and size > dim: | |
| raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
| # Recursively walk through all the children. | |
| # Any children which exposes the set_attention_slice method | |
| # gets the message | |
| def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
| if hasattr(module, "set_attention_slice"): | |
| module.set_attention_slice(slice_size.pop()) | |
| for child in module.children(): | |
| fn_recursive_set_attention_slice(child, slice_size) | |
| reversed_slice_size = list(reversed(slice_size)) | |
| for module in self.children(): | |
| fn_recursive_set_attention_slice(module, reversed_slice_size) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D)): | |
| module.gradient_checkpointing = value | |
| def forward( | |
| self, | |
| sample: torch.FloatTensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| controlnet_cond: torch.FloatTensor, | |
| conditioning_scale: float = 1.0, | |
| class_labels: Optional[torch.Tensor] = None, | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| ) -> Union[ControlNetOutput, Tuple]: | |
| # check channel order | |
| channel_order = self.config.controlnet_conditioning_channel_order | |
| if channel_order == "rgb": | |
| # in rgb order by default | |
| ... | |
| elif channel_order == "bgr": | |
| controlnet_cond = torch.flip(controlnet_cond, dims=[1]) | |
| else: | |
| raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") | |
| # prepare attention_mask | |
| if attention_mask is not None: | |
| attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if is_mps else torch.float64 | |
| else: | |
| dtype = torch.int32 if is_mps else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=self.dtype) | |
| emb = self.time_embedding(t_emb, timestep_cond) | |
| if self.class_embedding is not None: | |
| if class_labels is None: | |
| raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
| if self.config.class_embed_type == "timestep": | |
| class_labels = self.time_proj(class_labels) | |
| class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
| emb = emb + class_emb | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) | |
| sample += controlnet_cond | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
| down_block_res_samples += res_samples | |
| # 4. mid | |
| if self.mid_block is not None: | |
| sample = self.mid_block( | |
| sample, | |
| emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| # 5. Control net blocks | |
| controlnet_down_block_res_samples = () | |
| for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): | |
| down_block_res_sample = controlnet_block(down_block_res_sample) | |
| controlnet_down_block_res_samples += (down_block_res_sample,) | |
| down_block_res_samples = controlnet_down_block_res_samples | |
| mid_block_res_sample = self.controlnet_mid_block(sample) | |
| # 6. scaling | |
| down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] | |
| mid_block_res_sample *= conditioning_scale | |
| if not return_dict: | |
| return (down_block_res_samples, mid_block_res_sample) | |
| return ControlNetOutput( | |
| down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample | |
| ) | |
| def from_pretrained_2d(cls, pretrained_model_path, control_path=None): | |
| config_file = os.path.join(pretrained_model_path, 'config.json') | |
| if not os.path.isfile(config_file): | |
| raise RuntimeError(f"{config_file} does not exist") | |
| with open(config_file, "r") as f: | |
| config = json.load(f) | |
| config["_class_name"] = cls.__name__ | |
| config["down_block_types"] = [ | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "CrossAttnDownBlock3D", | |
| "DownBlock3D" | |
| ] | |
| from diffusers.utils import WEIGHTS_NAME | |
| model = cls.from_config(config) | |
| if control_path is None: | |
| model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| else: | |
| model_file = control_path | |
| state_dict = torch.load(model_file, map_location="cpu") | |
| state_dict = {k[14:]: state_dict[k] for k in state_dict.keys()} | |
| for k, v in model.state_dict().items(): | |
| if '_temp.' in k: | |
| state_dict.update({k: v}) | |
| model.load_state_dict(state_dict) | |
| return model | |
| def zero_module(module): | |
| for p in module.parameters(): | |
| nn.init.zeros_(p) | |
| return module | |