Spaces:
Running
on
Zero
Running
on
Zero
| import importlib | |
| import os | |
| import os.path as osp | |
| import shutil | |
| import sys | |
| from pathlib import Path | |
| import av | |
| import numpy as np | |
| import torch | |
| import torchvision | |
| from einops import rearrange | |
| from PIL import Image | |
| def seed_everything(seed): | |
| import random | |
| import numpy as np | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| np.random.seed(seed % (2**32)) | |
| random.seed(seed) | |
| def import_filename(filename): | |
| spec = importlib.util.spec_from_file_location("mymodule", filename) | |
| module = importlib.util.module_from_spec(spec) | |
| sys.modules[spec.name] = module | |
| spec.loader.exec_module(module) | |
| return module | |
| def delete_additional_ckpt(base_path, num_keep): | |
| dirs = [] | |
| for d in os.listdir(base_path): | |
| if d.startswith("checkpoint-"): | |
| dirs.append(d) | |
| num_tot = len(dirs) | |
| if num_tot <= num_keep: | |
| return | |
| # ensure ckpt is sorted and delete the ealier! | |
| del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep] | |
| for d in del_dirs: | |
| path_to_dir = osp.join(base_path, d) | |
| if osp.exists(path_to_dir): | |
| shutil.rmtree(path_to_dir) | |
| def save_videos_from_pil(pil_images, path, fps=8, audio_path=None): | |
| import av | |
| save_fmt = Path(path).suffix | |
| os.makedirs(os.path.dirname(path), exist_ok=True) | |
| width, height = pil_images[0].size | |
| if save_fmt == ".mp4": | |
| codec = "libx264" | |
| container = av.open(path, "w") | |
| stream = container.add_stream(codec, rate=fps) | |
| stream.width = width | |
| stream.height = height | |
| for pil_image in pil_images: | |
| # pil_image = Image.fromarray(image_arr).convert("RGB") | |
| av_frame = av.VideoFrame.from_image(pil_image) | |
| container.mux(stream.encode(av_frame)) | |
| container.mux(stream.encode()) | |
| container.close() | |
| elif save_fmt == ".gif": | |
| pil_images[0].save( | |
| fp=path, | |
| format="GIF", | |
| append_images=pil_images[1:], | |
| save_all=True, | |
| duration=(1 / fps * 1000), | |
| loop=0, | |
| ) | |
| else: | |
| raise ValueError("Unsupported file type. Use .mp4 or .gif.") | |
| def save_videos_grid(videos: torch.Tensor, path: str, audio_path=None, rescale=False, n_rows=6, fps=8): | |
| videos = rearrange(videos, "b c t h w -> t b c h w") | |
| height, width = videos.shape[-2:] | |
| outputs = [] | |
| for x in videos: | |
| x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w) | |
| x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c) | |
| if rescale: | |
| x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
| x = (x * 255).numpy().astype(np.uint8) | |
| x = Image.fromarray(x) | |
| outputs.append(x) | |
| os.makedirs(os.path.dirname(path), exist_ok=True) | |
| save_videos_from_pil(outputs, path, fps, audio_path=audio_path) | |
| def read_frames(video_path): | |
| container = av.open(video_path) | |
| video_stream = next(s for s in container.streams if s.type == "video") | |
| frames = [] | |
| for packet in container.demux(video_stream): | |
| for frame in packet.decode(): | |
| image = Image.frombytes( | |
| "RGB", | |
| (frame.width, frame.height), | |
| frame.to_rgb().to_ndarray(), | |
| ) | |
| frames.append(image) | |
| return frames | |
| def get_fps(video_path): | |
| container = av.open(video_path) | |
| video_stream = next(s for s in container.streams if s.type == "video") | |
| fps = video_stream.average_rate | |
| container.close() | |
| return fps | |
| def crop_and_pad(image, rect): | |
| x0, y0, x1, y1 = rect | |
| h, w = image.shape[:2] | |
| # 确保坐标在图像范围内 | |
| x0, y0 = max(0, x0), max(0, y0) | |
| x1, y1 = min(w, x1), min(h, y1) | |
| # 计算原始框的宽度和高度 | |
| width = x1 - x0 | |
| height = y1 - y0 | |
| # 使用较小的边长作为裁剪正方形的边长 | |
| side_length = min(width, height) | |
| # 计算正方形框中心点 | |
| center_x = (x0 + x1) // 2 | |
| center_y = (y0 + y1) // 2 | |
| # 重新计算正方形框的坐标 | |
| new_x0 = max(0, center_x - side_length // 2) | |
| new_y0 = max(0, center_y - side_length // 2) | |
| new_x1 = min(w, new_x0 + side_length) | |
| new_y1 = min(h, new_y0 + side_length) | |
| # 最终裁剪框的尺寸修正(确保是正方形) | |
| if (new_x1 - new_x0) != (new_y1 - new_y0): | |
| side_length = min(new_x1 - new_x0, new_y1 - new_y0) | |
| new_x1 = new_x0 + side_length | |
| new_y1 = new_y0 + side_length | |
| # 裁剪图像 | |
| cropped_image = image[new_y0:new_y1, new_x0:new_x1] | |
| return cropped_image |