Spaces:
Running
on
Zero
Running
on
Zero
Update app_with_diffusers.py
Browse files- app_with_diffusers.py +4 -3
app_with_diffusers.py
CHANGED
|
@@ -39,13 +39,13 @@ pipe.aggregator.load_state_dict(pretrained_state_dict)
|
|
| 39 |
pipe.to(device='cuda', dtype=torch.float16)
|
| 40 |
pipe.aggregator.to(device='cuda', dtype=torch.float16)
|
| 41 |
|
| 42 |
-
def infer(input_image):
|
| 43 |
# load a broken image
|
| 44 |
low_quality_image = Image.open(input_image).convert("RGB")
|
| 45 |
|
| 46 |
# InstantIR restoration
|
| 47 |
image = pipe(
|
| 48 |
-
prompt=
|
| 49 |
image=low_quality_image,
|
| 50 |
previewer_scheduler=lcm_scheduler,
|
| 51 |
).images[0]
|
|
@@ -59,11 +59,12 @@ with gr.Blocks() as demo:
|
|
| 59 |
with gr.Row():
|
| 60 |
with gr.Column():
|
| 61 |
lq_img = gr.Image(label="Low-quality image", type="filepath")
|
|
|
|
| 62 |
submit_btn = gr.Button("InstantIR magic!")
|
| 63 |
output_img = gr.Image(label="InstantIR restored")
|
| 64 |
submit_btn.click(
|
| 65 |
fn=infer,
|
| 66 |
-
inputs=[lq_img],
|
| 67 |
outputs=[output_img]
|
| 68 |
)
|
| 69 |
demo.launch(show_error=True)
|
|
|
|
| 39 |
pipe.to(device='cuda', dtype=torch.float16)
|
| 40 |
pipe.aggregator.to(device='cuda', dtype=torch.float16)
|
| 41 |
|
| 42 |
+
def infer(prompt, input_image):
|
| 43 |
# load a broken image
|
| 44 |
low_quality_image = Image.open(input_image).convert("RGB")
|
| 45 |
|
| 46 |
# InstantIR restoration
|
| 47 |
image = pipe(
|
| 48 |
+
prompt=prompt,
|
| 49 |
image=low_quality_image,
|
| 50 |
previewer_scheduler=lcm_scheduler,
|
| 51 |
).images[0]
|
|
|
|
| 59 |
with gr.Row():
|
| 60 |
with gr.Column():
|
| 61 |
lq_img = gr.Image(label="Low-quality image", type="filepath")
|
| 62 |
+
prompt = gr.Textbox(label="Prompt", value="")
|
| 63 |
submit_btn = gr.Button("InstantIR magic!")
|
| 64 |
output_img = gr.Image(label="InstantIR restored")
|
| 65 |
submit_btn.click(
|
| 66 |
fn=infer,
|
| 67 |
+
inputs=[prompt, lq_img],
|
| 68 |
outputs=[output_img]
|
| 69 |
)
|
| 70 |
demo.launch(show_error=True)
|