File size: 3,543 Bytes
26557da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from .base_prompter import BasePrompter
from models.wan_video_text_encoder import WanTextEncoder
from transformers import AutoTokenizer
import os, torch
import ftfy
import html
import string
import regex as re


def basic_clean(text):
    text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()


def whitespace_clean(text):
    text = re.sub(r"\s+", " ", text)
    text = text.strip()
    return text


def canonicalize(text, keep_punctuation_exact_string=None):
    text = text.replace("_", " ")
    if keep_punctuation_exact_string:
        text = keep_punctuation_exact_string.join(
            part.translate(str.maketrans("", "", string.punctuation))
            for part in text.split(keep_punctuation_exact_string)
        )
    else:
        text = text.translate(str.maketrans("", "", string.punctuation))
    text = text.lower()
    text = re.sub(r"\s+", " ", text)
    return text.strip()


class HuggingfaceTokenizer:
    def __init__(self, name, seq_len=None, clean=None, **kwargs):
        assert clean in (None, "whitespace", "lower", "canonicalize")
        self.name = name
        self.seq_len = seq_len
        self.clean = clean

        # init tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(name, **kwargs)
        self.vocab_size = self.tokenizer.vocab_size

    def __call__(self, sequence, **kwargs):
        return_mask = kwargs.pop("return_mask", False)

        # arguments
        _kwargs = {"return_tensors": "pt"}
        if self.seq_len is not None:
            _kwargs.update(
                {
                    "padding": "max_length",
                    "truncation": True,
                    "max_length": self.seq_len,
                }
            )
        _kwargs.update(**kwargs)

        # tokenization
        if isinstance(sequence, str):
            sequence = [sequence]
        if self.clean:
            sequence = [self._clean(u) for u in sequence]
        ids = self.tokenizer(sequence, **_kwargs)

        # output
        if return_mask:
            return ids.input_ids, ids.attention_mask
        else:
            return ids.input_ids

    def _clean(self, text):
        if self.clean == "whitespace":
            text = whitespace_clean(basic_clean(text))
        elif self.clean == "lower":
            text = whitespace_clean(basic_clean(text)).lower()
        elif self.clean == "canonicalize":
            text = canonicalize(basic_clean(text))
        return text


class WanPrompter(BasePrompter):
    def __init__(self, tokenizer_path=None, text_len=512):
        super().__init__()
        self.text_len = text_len
        self.text_encoder = None
        self.fetch_tokenizer(tokenizer_path)

    def fetch_tokenizer(self, tokenizer_path=None):
        if tokenizer_path is not None:
            self.tokenizer = HuggingfaceTokenizer(
                name=tokenizer_path, seq_len=self.text_len, clean="whitespace"
            )

    def fetch_models(self, text_encoder: WanTextEncoder = None):
        self.text_encoder = text_encoder

    def encode_prompt(self, prompt, positive=True, device="cuda"):
        prompt = self.process_prompt(prompt, positive=positive)

        ids, mask = self.tokenizer(prompt, return_mask=True, add_special_tokens=True)
        ids = ids.to(device)
        mask = mask.to(device)
        seq_lens = mask.gt(0).sum(dim=1).long()
        prompt_emb = self.text_encoder(ids, mask)
        for i, v in enumerate(seq_lens):
            prompt_emb[:, v:] = 0
        return prompt_emb