Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| class ContinuousODEScheduler: | |
| def __init__( | |
| self, num_inference_steps=100, sigma_max=700.0, sigma_min=0.002, rho=7.0 | |
| ): | |
| self.sigma_max = sigma_max | |
| self.sigma_min = sigma_min | |
| self.rho = rho | |
| self.set_timesteps(num_inference_steps) | |
| def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, **kwargs): | |
| ramp = torch.linspace(1 - denoising_strength, 1, num_inference_steps) | |
| min_inv_rho = torch.pow(torch.tensor((self.sigma_min,)), (1 / self.rho)) | |
| max_inv_rho = torch.pow(torch.tensor((self.sigma_max,)), (1 / self.rho)) | |
| self.sigmas = torch.pow( | |
| max_inv_rho + ramp * (min_inv_rho - max_inv_rho), self.rho | |
| ) | |
| self.timesteps = torch.log(self.sigmas) * 0.25 | |
| def step(self, model_output, timestep, sample, to_final=False): | |
| timestep_id = torch.argmin((self.timesteps - timestep).abs()) | |
| sigma = self.sigmas[timestep_id] | |
| sample *= (sigma * sigma + 1).sqrt() | |
| estimated_sample = ( | |
| -sigma / (sigma * sigma + 1).sqrt() * model_output | |
| + 1 / (sigma * sigma + 1) * sample | |
| ) | |
| if to_final or timestep_id + 1 >= len(self.timesteps): | |
| prev_sample = estimated_sample | |
| else: | |
| sigma_ = self.sigmas[timestep_id + 1] | |
| derivative = 1 / sigma * (sample - estimated_sample) | |
| prev_sample = sample + derivative * (sigma_ - sigma) | |
| prev_sample /= (sigma_ * sigma_ + 1).sqrt() | |
| return prev_sample | |
| def return_to_timestep(self, timestep, sample, sample_stablized): | |
| # This scheduler doesn't support this function. | |
| pass | |
| def add_noise(self, original_samples, noise, timestep): | |
| timestep_id = torch.argmin((self.timesteps - timestep).abs()) | |
| sigma = self.sigmas[timestep_id] | |
| sample = (original_samples + noise * sigma) / (sigma * sigma + 1).sqrt() | |
| return sample | |
| def training_target(self, sample, noise, timestep): | |
| timestep_id = torch.argmin((self.timesteps - timestep).abs()) | |
| sigma = self.sigmas[timestep_id] | |
| target = ( | |
| -(sigma * sigma + 1).sqrt() / sigma + 1 / (sigma * sigma + 1).sqrt() / sigma | |
| ) * sample + 1 / (sigma * sigma + 1).sqrt() * noise | |
| return target | |
| def training_weight(self, timestep): | |
| timestep_id = torch.argmin((self.timesteps - timestep).abs()) | |
| sigma = self.sigmas[timestep_id] | |
| weight = (1 + sigma * sigma).sqrt() / sigma | |
| return weight | |