Spaces:
Runtime error
Runtime error
| # ------------------------------------------------------------------------ | |
| # Modified from Grounded-SAM (https://github.com/IDEA-Research/Grounded-Segment-Anything) | |
| # ------------------------------------------------------------------------ | |
| import os | |
| import sys | |
| import random | |
| import warnings | |
| from tqdm import tqdm | |
| os.system("export BUILD_WITH_CUDA=True") | |
| #os.system("pip install --upgrade diffusers[torch]") | |
| #os.system("python -m pip install -r GroundingDINO/requirements.txt") | |
| os.system("python -m pip install -e segment-anything") | |
| #os.system("python -m pip install -e --use-pep517 --no-build-isolation GroundingDINO") | |
| #os.system("pip install opencv-python pycocotools matplotlib") | |
| #sys.path.insert(0, './GroundingDINO') | |
| sys.path.insert(0, './segment-anything') | |
| warnings.filterwarnings("ignore") | |
| import cv2 | |
| from scipy import ndimage | |
| import gradio as gr | |
| import argparse | |
| import numpy as np | |
| from PIL import Image | |
| from moviepy.editor import * | |
| import torch | |
| from torch.nn import functional as F | |
| import torchvision | |
| import networks | |
| import utils | |
| # Grounding DINO | |
| from groundingdino.util.inference import Model | |
| # SAM | |
| from segment_anything.utils.transforms import ResizeLongestSide | |
| # SD | |
| from diffusers import StableDiffusionPipeline | |
| transform = ResizeLongestSide(1024) | |
| # Green Screen | |
| PALETTE_back = (51, 255, 146) | |
| GROUNDING_DINO_CONFIG_PATH = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py" | |
| GROUNDING_DINO_CHECKPOINT_PATH = "checkpoints/groundingdino_swint_ogc.pth" | |
| mam_checkpoint="checkpoints/mam_sam_vitb.pth" | |
| output_dir="outputs" | |
| device = 'cuda' | |
| background_list = os.listdir('assets/backgrounds') | |
| #groundingdino_model = None | |
| #mam_predictor = None | |
| #generator = None | |
| # initialize MAM | |
| mam_model = networks.get_generator_m2m(seg='sam', m2m='sam_decoder_deep') | |
| mam_model.to(device) | |
| checkpoint = torch.load(mam_checkpoint, map_location=device) | |
| mam_model.load_state_dict(utils.remove_prefix_state_dict(checkpoint['state_dict']), strict=True) | |
| mam_model = mam_model.eval() | |
| # initialize GroundingDINO | |
| grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device=device) | |
| # initialize StableDiffusionPipeline | |
| generator = StableDiffusionPipeline.from_pretrained("checkpoints/stable-diffusion-v1-5", torch_dtype=torch.float16) | |
| generator.to(device) | |
| def get_frames(video_in): | |
| frames = [] | |
| # resize the video | |
| clip = VideoFileClip(video_in) | |
| # check fps | |
| if clip.fps > 30: | |
| print("video rate is over 30, resetting to 30") | |
| clip_resized = clip.resize(height=512) | |
| clip_resized.write_videofile("video_resized.mp4", fps=30, verbose=False, logger=None) | |
| else: | |
| print("video rate is OK") | |
| clip_resized = clip.resize(height=512) | |
| clip_resized.write_videofile("video_resized.mp4", fps=clip.fps, verbose=False, logger=None) | |
| print("video resized to 512 height") | |
| # Opens the Video file with CV2 | |
| cap = cv2.VideoCapture("video_resized.mp4") | |
| fps = cap.get(cv2.CAP_PROP_FPS) | |
| total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # total number of frames | |
| print(f"video fps: {fps}, total frames: {total_frames}") | |
| i = 0 | |
| with tqdm(total=total_frames, desc="Extracting frames", unit="frame") as pbar: | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| frame_name = f'kang{i}.jpg' | |
| cv2.imwrite(frame_name, frame) | |
| frames.append(frame_name) | |
| i += 1 | |
| pbar.update(1) | |
| cap.release() | |
| cv2.destroyAllWindows() | |
| print("broke the video into frames") | |
| return frames, fps | |
| def create_video(frames, fps, type): | |
| print("building video result") | |
| clip = ImageSequenceClip(frames, fps=fps) | |
| clip.write_videofile(f"video_{type}_result.mp4", fps=fps) | |
| return f"video_{type}_result.mp4" | |
| def run_grounded_sam(input_image, text_prompt, task_type, background_prompt, bg_already): | |
| background_type = "generated_by_text" | |
| box_threshold = 0.25 | |
| text_threshold = 0.25 | |
| iou_threshold = 0.5 | |
| scribble_mode = "split" | |
| guidance_mode = "alpha" | |
| #global groundingdino_model, sam_predictor, generator | |
| # make dir | |
| os.makedirs(output_dir, exist_ok=True) | |
| #if mam_predictor is None: | |
| # initialize MAM | |
| # build model | |
| # mam_model = networks.get_generator_m2m(seg='sam', m2m='sam_decoder_deep') | |
| # mam_model.to(device) | |
| # load checkpoint | |
| # checkpoint = torch.load(mam_checkpoint, map_location=device) | |
| # mam_model.load_state_dict(utils.remove_prefix_state_dict(checkpoint['state_dict']), strict=True) | |
| # inference | |
| # mam_model = mam_model.eval() | |
| #if groundingdino_model is None: | |
| # grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device=device) | |
| #if generator is None: | |
| # generator = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) | |
| # generator.to(device) | |
| # load image | |
| #image_ori = input_image["image"] | |
| image_ori = input_image | |
| #scribble = input_image["mask"] | |
| original_size = image_ori.shape[:2] | |
| if task_type == 'text': | |
| if text_prompt is None: | |
| print('Please input non-empty text prompt') | |
| with torch.no_grad(): | |
| detections, phrases = grounding_dino_model.predict_with_caption( | |
| image=cv2.cvtColor(image_ori, cv2.COLOR_RGB2BGR), | |
| caption=text_prompt, | |
| box_threshold=box_threshold, | |
| text_threshold=text_threshold | |
| ) | |
| if len(detections.xyxy) > 1: | |
| nms_idx = torchvision.ops.nms( | |
| torch.from_numpy(detections.xyxy), | |
| torch.from_numpy(detections.confidence), | |
| iou_threshold, | |
| ).numpy().tolist() | |
| detections.xyxy = detections.xyxy[nms_idx] | |
| detections.confidence = detections.confidence[nms_idx] | |
| bbox = detections.xyxy[np.argmax(detections.confidence)] | |
| bbox = transform.apply_boxes(bbox, original_size) | |
| bbox = torch.as_tensor(bbox, dtype=torch.float).to(device) | |
| image = transform.apply_image(image_ori) | |
| image = torch.as_tensor(image).to(device) | |
| image = image.permute(2, 0, 1).contiguous() | |
| pixel_mean = torch.tensor([123.675, 116.28, 103.53]).view(3,1,1).to(device) | |
| pixel_std = torch.tensor([58.395, 57.12, 57.375]).view(3,1,1).to(device) | |
| image = (image - pixel_mean) / pixel_std | |
| h, w = image.shape[-2:] | |
| pad_size = image.shape[-2:] | |
| padh = 1024 - h | |
| padw = 1024 - w | |
| image = F.pad(image, (0, padw, 0, padh)) | |
| if task_type == 'scribble_point': | |
| scribble = scribble.transpose(2, 1, 0)[0] | |
| labeled_array, num_features = ndimage.label(scribble >= 255) | |
| centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1)) | |
| centers = np.array(centers) | |
| ### (x,y) | |
| centers = transform.apply_coords(centers, original_size) | |
| point_coords = torch.from_numpy(centers).to(device) | |
| point_coords = point_coords.unsqueeze(0).to(device) | |
| point_labels = torch.from_numpy(np.array([1] * len(centers))).unsqueeze(0).to(device) | |
| if scribble_mode == 'split': | |
| point_coords = point_coords.permute(1, 0, 2) | |
| point_labels = point_labels.permute(1, 0) | |
| sample = {'image': image.unsqueeze(0), 'point': point_coords, 'label': point_labels, 'ori_shape': original_size, 'pad_shape': pad_size} | |
| elif task_type == 'scribble_box': | |
| scribble = scribble.transpose(2, 1, 0)[0] | |
| labeled_array, num_features = ndimage.label(scribble >= 255) | |
| centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1)) | |
| centers = np.array(centers) | |
| ### (x1, y1, x2, y2) | |
| x_min = centers[:, 0].min() | |
| x_max = centers[:, 0].max() | |
| y_min = centers[:, 1].min() | |
| y_max = centers[:, 1].max() | |
| bbox = np.array([x_min, y_min, x_max, y_max]) | |
| bbox = transform.apply_boxes(bbox, original_size) | |
| bbox = torch.as_tensor(bbox, dtype=torch.float).to(device) | |
| sample = {'image': image.unsqueeze(0), 'bbox': bbox.unsqueeze(0), 'ori_shape': original_size, 'pad_shape': pad_size} | |
| elif task_type == 'text': | |
| sample = {'image': image.unsqueeze(0), 'bbox': bbox.unsqueeze(0), 'ori_shape': original_size, 'pad_shape': pad_size} | |
| else: | |
| print("task_type:{} error!".format(task_type)) | |
| with torch.no_grad(): | |
| feas, pred, post_mask = mam_model.forward_inference(sample) | |
| alpha_pred_os1, alpha_pred_os4, alpha_pred_os8 = pred['alpha_os1'], pred['alpha_os4'], pred['alpha_os8'] | |
| alpha_pred_os8 = alpha_pred_os8[..., : sample['pad_shape'][0], : sample['pad_shape'][1]] | |
| alpha_pred_os4 = alpha_pred_os4[..., : sample['pad_shape'][0], : sample['pad_shape'][1]] | |
| alpha_pred_os1 = alpha_pred_os1[..., : sample['pad_shape'][0], : sample['pad_shape'][1]] | |
| alpha_pred_os8 = F.interpolate(alpha_pred_os8, sample['ori_shape'], mode="bilinear", align_corners=False) | |
| alpha_pred_os4 = F.interpolate(alpha_pred_os4, sample['ori_shape'], mode="bilinear", align_corners=False) | |
| alpha_pred_os1 = F.interpolate(alpha_pred_os1, sample['ori_shape'], mode="bilinear", align_corners=False) | |
| if guidance_mode == 'mask': | |
| weight_os8 = utils.get_unknown_tensor_from_mask_oneside(post_mask, rand_width=10, train_mode=False) | |
| post_mask[weight_os8>0] = alpha_pred_os8[weight_os8>0] | |
| alpha_pred = post_mask.clone().detach() | |
| else: | |
| weight_os8 = utils.get_unknown_box_from_mask(post_mask) | |
| alpha_pred_os8[weight_os8>0] = post_mask[weight_os8>0] | |
| alpha_pred = alpha_pred_os8.clone().detach() | |
| weight_os4 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=20, train_mode=False) | |
| alpha_pred[weight_os4>0] = alpha_pred_os4[weight_os4>0] | |
| weight_os1 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=10, train_mode=False) | |
| alpha_pred[weight_os1>0] = alpha_pred_os1[weight_os1>0] | |
| alpha_pred = alpha_pred[0][0].cpu().numpy() | |
| #### draw | |
| ### alpha matte | |
| alpha_rgb = cv2.cvtColor(np.uint8(alpha_pred*255), cv2.COLOR_GRAY2RGB) | |
| ### com img with background | |
| global background_img | |
| if background_type == 'real_world_sample': | |
| background_img_file = os.path.join('assets/backgrounds', random.choice(background_list)) | |
| background_img = cv2.imread(background_img_file) | |
| background_img = cv2.cvtColor(background_img, cv2.COLOR_BGR2RGB) | |
| background_img = cv2.resize(background_img, (image_ori.shape[1], image_ori.shape[0])) | |
| com_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.uint8(background_img) | |
| com_img = np.uint8(com_img) | |
| else: | |
| if background_prompt is None: | |
| print('Please input non-empty background prompt') | |
| else: | |
| if bg_already is False: | |
| background_img = generator(background_prompt).images[0] | |
| background_img = np.array(background_img) | |
| background_img = cv2.resize(background_img, (image_ori.shape[1], image_ori.shape[0])) | |
| com_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.uint8(background_img) | |
| com_img = np.uint8(com_img) | |
| ### com img with green screen | |
| green_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.array([PALETTE_back], dtype='uint8') | |
| green_img = np.uint8(green_img) | |
| #return [(com_img, 'composite with background'), (green_img, 'green screen'), (alpha_rgb, 'alpha matte')] | |
| return com_img, green_img, alpha_rgb | |
| def infer(video_in, trim_value, prompt, background_prompt, progress=gr.Progress(track_tqdm=True)): | |
| print(prompt) | |
| break_vid = get_frames(video_in) | |
| frames_list = break_vid[0] | |
| fps = break_vid[1] | |
| n_frame = int(trim_value * fps) | |
| if n_frame >= len(frames_list): | |
| print("video is shorter than the cut value") | |
| n_frame = len(frames_list) | |
| with_bg_result_frames = [] | |
| with_green_result_frames = [] | |
| with_matte_result_frames = [] | |
| print("set stop frames to:", n_frame) | |
| bg_already = False | |
| # tqdm hooked into gr.Progress | |
| for i in tqdm(frames_list[:n_frame], desc="Inferring frames", unit="frame"): | |
| to_numpy_i = Image.open(i).convert("RGB") | |
| image_array = np.array(to_numpy_i) | |
| results = run_grounded_sam(image_array, prompt, "text", background_prompt, bg_already) | |
| bg_already = True | |
| bg_img = Image.fromarray(results[0]) | |
| green_img = Image.fromarray(results[1]) | |
| matte_img = Image.fromarray(results[2]) | |
| # exporting the images | |
| bg_img.save(f"bg_result_img-{i}.jpg") | |
| with_bg_result_frames.append(f"bg_result_img-{i}.jpg") | |
| green_img.save(f"green_result_img-{i}.jpg") | |
| with_green_result_frames.append(f"green_result_img-{i}.jpg") | |
| matte_img.save(f"matte_result_img-{i}.jpg") | |
| with_matte_result_frames.append(f"matte_result_img-{i}.jpg") | |
| vid_bg = create_video(with_bg_result_frames, fps, "bg") | |
| vid_green = create_video(with_green_result_frames, fps, "greenscreen") | |
| vid_matte = create_video(with_matte_result_frames, fps, "matte") | |
| print("finished!") | |
| return vid_bg, vid_green, vid_matte | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser("MAM demo", add_help=True) | |
| parser.add_argument("--debug", action="store_true", help="using debug mode") | |
| parser.add_argument("--share", action="store_true", help="share the app") | |
| parser.add_argument('--port', type=int, default=7589, help='port to run the server') | |
| parser.add_argument('--no-gradio-queue', action="store_true", help='path to the SAM checkpoint') | |
| args = parser.parse_args() | |
| print(args) | |
| block = gr.Blocks() | |
| if not args.no_gradio_queue: | |
| block = block.queue() | |
| with block: | |
| gr.Markdown( | |
| """ | |
| # Matting Anything in Video Demo | |
| Welcome to the Matting Anything in Video demo by @fffiloni and upload your video to get started <br/> | |
| You may open usage details below to understand how to use this demo. | |
| ## Usage | |
| <details> | |
| You may upload a video to start, for the moment we only support 1 prompt type to get the alpha matte of the target: | |
| **text**: Send text prompt to identify the target instance in the `Text prompt` box. | |
| We also only support 1 background type to support image composition with the alpha matte output: | |
| **generated_by_text**: Send background text prompt to create a background image with stable diffusion model in the `Background prompt` box. | |
| </details> | |
| <a href="https://huggingface.co/spaces/fffiloni/Video-Matting-Anything?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> | |
| <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
| for longer sequences, more control and no queue. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| video_in = gr.Video() | |
| trim_in = gr.Slider(label="Cut video at (s)", minimum=1, maximum=10, step=1, value=1) | |
| #task_type = gr.Dropdown(["scribble_point", "scribble_box", "text"], value="text", label="Prompt type") | |
| #task_type = "text" | |
| text_prompt = gr.Textbox(label="Text prompt", placeholder="the girl in the middle", info="Describe the subject visible in your video that you want to matte") | |
| #background_type = gr.Dropdown(["generated_by_text", "real_world_sample"], value="generated_by_text", label="Background type") | |
| background_prompt = gr.Textbox(label="Background prompt", placeholder="downtown area in New York") | |
| run_button = gr.Button("Run") | |
| #with gr.Accordion("Advanced options", open=False): | |
| # box_threshold = gr.Slider( | |
| # label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05 | |
| # ) | |
| # text_threshold = gr.Slider( | |
| # label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05 | |
| # ) | |
| # iou_threshold = gr.Slider( | |
| # label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.05 | |
| # ) | |
| # scribble_mode = gr.Dropdown( | |
| # ["merge", "split"], value="split", label="scribble_mode" | |
| # ) | |
| # guidance_mode = gr.Dropdown( | |
| # ["mask", "alpha"], value="alpha", label="guidance_mode", info="mask guidance is for complex scenes with multiple instances, alpha guidance is for simple scene with single instance" | |
| # ) | |
| with gr.Column(): | |
| #gallery = gr.Gallery( | |
| # label="Generated images", show_label=True, elem_id="gallery" | |
| #).style(preview=True, grid=3, object_fit="scale-down") | |
| vid_bg_out = gr.Video(label="Video with background") | |
| with gr.Row(): | |
| vid_green_out = gr.Video(label="Video green screen") | |
| vid_matte_out = gr.Video(label="Video matte") | |
| gr.Examples( | |
| fn=infer, | |
| examples=[ | |
| [ | |
| "./examples/example_men_bottle.mp4", | |
| 10, | |
| "the man holding a bottle", | |
| "the Sahara desert" | |
| ] | |
| ], | |
| inputs=[video_in, trim_in, text_prompt, background_prompt], | |
| outputs=[vid_bg_out, vid_green_out, vid_matte_out] | |
| ) | |
| run_button.click(fn=infer, inputs=[ | |
| video_in, trim_in, text_prompt, background_prompt], outputs=[vid_bg_out, vid_green_out, vid_matte_out], api_name="go_matte") | |
| block.queue(max_size=24).launch(debug=args.debug, share=args.share, show_error=True) | |
| #block.queue(concurrency_count=100) | |
| #block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share) | |